ig sitepoint

THE
JAVASCRIPT
ANTHOLOGY

101 ESSENTIAL TIPS, TRICKS & HACKS

BY JAMES EDWARDS
& CAMERON ADAMS

The JavaScript Anthology
101 Essential Tips, Tricks & Hacks

(4 Chapter Sample)

Thank you for downloading this four-chapter sample of James
Edwards’s and Cameron Adams’s book, The JavaScript Anthology:
101 Essential Tips, Tricks & Hacks, published by SitePoint.

This excerpt includes the Summary of Contents, Information
about the Authors, Editors and SitePoint, Table of Contents,
Preface, four chapters of the book, and the index.

We hope you find this information useful in evaluating this book.

For more information or to order, visit sitepoint.com

http://www.sitepoint.com/launch/92257e

Summary of Contents of this Excerpt

Preface ...o..ooiiiiiei e xi
1. Getting Started with JavaScript.............cccoccoiii. 1
5. Navigating the Document Object Model............................. 79
7. Working with Windows and Frames ... 127
13. Basic Dynamic HTML..............ccoooiii 229
INA@X i 565

Summary of Additional Book Contents

2. Working with Numbers................cocoi 31
3. Working with Strings..............cccociiiiii, 45
4. Working with Arrays ..o, 65
6. Processing and Validating Forms ..., 103
8. Working with Cookies...............ccccoviiiiiiiiiiii, 143
9. Working with Dates and Timescccccoceviiiinnnn 151
10. Working with Imagescccoociiiiin 167
11. Detecting Browser Differences ... 191
12. Using JavaScript with CSS ... 201
14. Time and Motion..............ccoccooiiiiiiii 267
15. DHTML Menus and Navigation..............ccccccoooiininnn.e 321
16. JavaScript and Accessibility.............ccccoooiiiiiiiiiii 385
17. Using JavaScript with Flash................. 457
18. Building Web Applications with JavaScript...................... 467
19. Object Orientation in JavaScript...........ccoocooiiiiiiinn. 515

20. Keeping up the Pacecccooiiiiiiiiii 565

The JavaScript Anthology
101 Essential Tips, Tricks & Hacks

by James Edwards

and Cameron Adams

The JavaScript Anthology: 101 Essential Tips, Tricks & Hacks

by James Edwards and Cameron Adams
Copyright © 2006 SitePoint Pty. Ltd.

Expert Reviewer: Bobby van der Sluis Editor: Georgina Laidlaw
Expert Reviewer: Derek Featherstone Index Editor: Bill Johncocks
Managing Editor: Simon Mackie Cover Design: Jess Mason
Technical Editor: Kevin Yank Cover Layout: Alex Walker
Printing History:

First Edition: February 2006

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the
case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by
the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-
ment of the trademark.

w\ sitepoint

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood
VIC Australia 3066.

Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 0-9752402-6-9
Printed and bound in the United States of America

About the Authors

James Edwards (aka brothercakel) is a freelance web developer based in the United
Kingdom, specializing in advanced DHTML programming and accessible web site devel-
opment. He is an outspoken advocate of standards-based development, a part-time forum
moderatox, and author of the Ultimate Drop Down Menu? system—the first commercial
DHTML menu to be WCAG-compliant.

Cameron Adams has a degree in law and one in science; naturally he chose a career in web
development. His business cards say, “Web Technologist” because he likes to have a hand
in graphic design, JavaScript, CSS, PHP, and anything else that takes his fancy that
morning. While running his own business—themaninblue.com®—he’s consulted and
worked for numerous government departments, nonprofit organizations, large corporations,
and tiny startups. Cameron lives in Melbourne, Australia, where, between coding mara-
thons, he likes to play soccer and mix some tunes for his irate neighbors.

About the Expert Reviewers

Bobby van der Sluis lives in the Netherlands and works at Blast Radius* in Amsterdam,
where he manages the interface development department. He’s a client-side web techno-
logles and design specialist, occasionally writing about these topics on his personal web
site. Bobby is an evangelist of unobtrusive JavaScript, progressive enhancement, and the
use of best practices, and has contributed to many notable sites, including A List Apart
and CSS Zen Garden. He spends his scarce spare time with his wife Anita and newly-born
daughter, Sofie.

Derek Featherstone is a well-known instructor, author, speaker, and developer with expert-
ise in web accessibility consulting. Derek delivers technical training that is engaging, in-
formative, and immediately applicable. A high-quality instructor, he draws on his back-
ground as a former high school teacher, plus seven years running his web development
and accessibility consultancy Further Ahead.® Derek blogs at boxofchocolates.ca. 7

About the Technical Editor

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica-
tions—books, articles, newsletters, and blogs. He has written over 50 articles for SitePoint,
but is best known for his book, Build Your Own Database Driven Website Using PHP &

! https/www.brothercake.com/

2 http//www.udm4.com/

3 http ;//themaninblue.com/
* http://www.blastradius.com/

> http J//www.bobbyvandersluis.com/
http //www.furtherahead.com/
" http://boxofchocolates.ca/

http://www.brothercake.com/
http://www.udm4.com/
http://themaninblue.com/
http://www.blastradius.com/
http://www.bobbyvandersluis.com/
http://www.bobbyvandersluis.com/
http://www.furtherahead.com/
http://boxofchocolates.ca/

MySQL. Kevin lives in Melbourne, Australia, and enjoys performing improvised comedy
theatre and flying light aircraft.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web
professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles
and community forums.

http://www.sitepoint.com/

For Kizzy—I missed @media
Sfor all the right reasons.

—James

This is for Mum, Dad,
Darren, and Davina, who
gave me their love and support
throughout the writing of this
book, even though I had to
explain it all using plasticine
dinosaurs.

—Cameron

Table of Contents

Preface ...ueeevviiiiiieiiteecc Xi
Who Should Read this Book?cooooc xi
What’s in this Book? ... xii
The Book’s Web Site ... XV

The Code Archive ... XV
Updates and Erratacccccciiiiiiiiiiiiieee XV
The SitePoint Forums ... XV
The SitePoint Newsletterscc.cccoooiiiiiii xvi
Your Feedback ... xvi
Acknowledgements ... xvi

1. Getting Started with JavaScriptccccoovviiiiiiiiiiiiiiii, 1
JavaScript Definedcccccoiiiiiiiiiiii 1
JavaScript’s LImitationscccccccciiiii 2

Security Restrictionscccccoovviiiiiiiiiiiii 3
JavaScript Best PractiCesuuuuuuuiiiiiiiiimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieens 5
Providing for Users who Don’t Have JavaScript (Progressive Enhance-
11015 01) PP PPPRTPPPNt 5
Separating Content from Behavior (Unobtrusive Scripting) 8
Using Braces and Semicolons (Consistent Coding Practice) 11
Adding a Script to a Pageccoooiiiiii 12

Putting HTML Comments Around Codecccccoiiviiinn. 13

The language Attributecooviiiiiiiiiiie e 14
Getting Multiple Scripts to Work on the Same Page 14
Hiding JavaScript Source Codecocooiiiiiiiiiiiii 18
Debugging a Scriptcccooiiiiiiiiiii 19

Understanding a Browser’s Built-in Error Reporting 20

UsINg @lert ..o 23

Using try-catCh ..o 24

Writing to the Page or Window ... 25

Using an External Debuggerooo 26
Strict Warningsccooooiiiiiiiiiiiii 26
SUMMATY ..o 29

2. Working with NUMDEIScc.ceevriimuiiiiimuiiiiiiiiiniiiiinniinnneraennenanen, 31
Doing Math with JavaScriptcccooiiii 31
Rounding a Number to x Decimal Placesccccooiiiiiii, 33
Creating and Constraining Random Numbersl 35
Converting a Number to a Stringccccceiiiiiiiiiii, 36

Formatting Currency Valuesccccooiiiiiiiiiiiiii 38

The JavaScript Anthology

Converting a String to a Number 39
Converting Numbers to Ordinals (-st, -nd, -rd, -th) 42
SUMIMNATY Lottt 43
3. Working with Stringscccceeeriimuiiiriiruiiiriiruiiniiiiiiiiemeresene 45
Including a Special Character in a Stringccoooi, 45
Transforming the Character Case of a String 47
Encoding a URL ..., 47
Comparing Two Strings ... 48
Finding a Substring within a String 51
Splitting a String into Substrings ... 52
Creating a Regular Expression ... 53
Testing whether a String Matches a Regular Expression 57
Testing whether a String Contains Only Numeric Data 58
Testing whether a String is a Valid Phone Number 59
Testing whether a String is a Valid Email Address 60
Searching and Replacing Text using a Regular Expression 61
SUMMATY ..o 63
4. Working With Arrayscccoeevvviiiiiiiiiiiiiiiiniiisiinnninsnnnnsssssssssssssnnns 65
Using Array-literals ... 66
Creating an Array of AIrayscccooiiiiiiiiiiiiiii 66
Indexing an Array with Strings Instead of Numbers 69
Turning an Array into a Stringcccoocciiii 71
Adding or Removing Members from an Array ... 72
Sorting an Array into Alphabetical or Numeric Order 75
Sorting a Multi-dimensional Arrayc.cccoooiiiii 76
Sorting an Array Randomly ... 77
SUMMATY L. 78
5. Navigating the Document Object Modelccceevrmruriiiiiriiinrinnnnnnnnen. 79
Accessing Elementscooooiiiiiiiiiii 82
Creating Elements and Text Nodescccccooiiiiiii 87
Changing the Type of an Elementc.ocooiii . 91
Removing an Element or Text Nodecccooiiii 93
Reading and Writing the Attributes of an Element 95
Getting all Elements with a Particular Attribute Value 98
Adding and Removing Multiple Classes to/from an Element 100
SUMIMATY Lo 102
6. Processing and Validating FOrmScccceerrirueiiniirnnninniinneinnieniesnneanns 103
Reading and Writing the Data in a Text Field 103
Reading and Setting the State of a Checkbox 106

iv Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Reading and Setting the State of a Radio Button 109

Reading and Setting the Value of a Select Box ... 111
Validating a Mandatory Text Field ... 113
Validating a Numeric Field ... 114
Validating an Email Address Field ... 115
Checking for Unselected Radio Buttonsc.ccoi. 115
Stopping a Form Being Submitted Unless all its Fields are Valid 116
Validating a Form with an Unknown Number of Fields 117
Printing Inline Error Messages when Validating a Form 119
Making Form Fields Appear or Disappear, Based on the Value of
other Fields ... 121
SUMIMATY Lo 125
7. Working with Windows and Framesc.cceceeerievnniriennnernennnsernennnees 127
Using Popup Windowsccooiiii, 128
What’s Wrong with Popups? ... 128
How Do I Minimize the Problems? .. 129
Opening Off-site Links in a New Window ... 133
Communicating Between Framesooo 135
Getting the Scrolling Positionccoii 137
Making the Page Scroll to a Particular Position 140
Getting the Viewport Size (the Available Space inside the Win-
AOW) o 141
SUMMATY ... 142
8. Working with COOKIesccoovvuuummmrmriinriiiiiiiiiiie, 143
Writing CooKiescccccoiiiiiiiiiiiiii 143
Reading a Cookeooooiiiiiiiii 145
Setting a Cookie to Expire at a Specific Date and Time 146
Making a Cookie Accessible Only from a Specific Domain or
Path ... 147
Circumventing Browser Restrictions on the Number of Cookies you
CAN USE ..o 148
SUMMATY ..o 150
9. Working with Dates and Timesccccccvvveiiiiiiiiimnniiiiiinieniennninnenn 151
Getting the Date and Time ... 151
Formatting a Date into a Sentenceccccoooeiiiiiiiiinnniienn, 154
Formatting the Time into a 12- or 24-hour Clock 157
Comparing Two Dates ... 159
Formatting the Difference Between Dates ... 164
SUMIMATY Lo 166

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

The JavaScript Anthology

10. Working with Imagescc.cceevrmmmiiiiiiiiiiiimniiiiiiininiiiineeeeenen 167
Preloading Imagesccccooiiiiiiiiiiiii 167
Swapping One Image for Another ... 169
Displaying an Image at Random ... 171
Making a Slideshow of Several Imagesccocociiii .. 173
Making an Image Fade in or out ... 176
Making an Image-based Clock that Updates in Real Time 181
Making a Progress Indicatorcccoccoiiiiiiiiiiiiii 186
SUMMATY ..o 189

11. Detecting Browser Differencesccoceeveiiinniiiinniiinnniinniinnniennn, 191
Identifying Support for a Particular Feature 192
Identifying a Particular Browserooo 194
Detecting Quirks Mode and Standards Modeo 198
SUMMATY ..o 200

12. Using JavaScript with €SSccccevviiiiiiiiiiiiiiii, 201
Changing the Style of a Single Element 201
Changing the Style of a Group of Elementsoon. 203
Retrieving the Computed Style of an Element 204
Making a Style Sheet Switcher ... 207

Maintaining Alternate Style Sheet Statesccccoooin. 212
Making a Style Sheet Switcher that Handles Multiple Media
TYPES i 215
Reading and Modifying an Existing Style Sheet 217
Adding New Style Sheet Rulescccoociii 220
Deleting a Rule from a Style Sheetccccoii 223
Creating a New Style Sheetcccooiiii 224
SUMMATY ... 227

13. Basic Dynamic HTMLccccoiiiiiiimmmmiiiiiiiiiiiininniiinneeeeienenieeen 229

Handling Events ... 229

The Short Way: Using Event Handlerso 230

The W3C Way (Event Listeners)cccccccooiiiiiiiiiniiiinnn.. 233
Finding the Size of an Element ... 245
Finding the Position of an Elementccccoii . 246
Detecting the Position of the Mouse Cursorcccoccciiiinin.n. 248
Displaying a Tooltip when you Mouse Over an Element 250
Sorting Tables by Colummncccoociiii 257
SUMIMATY Lo 266

14. Time and MOotioNcooviiiniiiiniiiicrr e, 267
Using setTimeout and setInterval ..., 267

vi Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Making an Object Move Along a Set Path ... 270

Making Animation Less Jerkyccccoocoiiiiiiiii 278
Animation Frame Timescccccooiii 279
Changing Between Frames ..., 279
Complexity of the Animationcccccoiviiiiiiiiiiiii 280
The Speed of the Computerccoooiiiiiiiiii 280
The Speed of the Browsercccccociiiiiii 281

Implementing Drag-and-drop Behavior 281

Reordering a List Using Drag-and-drop Functionality 290

Making a Scrolling News Tickercccccoooiiiii 298

Creating Clip-based Transition Effectscooooi 305

Making a Slider Controlcccoiiiiiiiiiiiii 311

SUMIMATY Lo 318

15. DHTML Menus and Navigationccccceevvuiiriinniinnnnniinninnenninn 321

Making a Drop-down or Fly-out Menuc...cooooiii. 323

Adding Arrows to Indicate the Presence of a Submenu 334

Adding Timers so the Menus Don’t Open and Close so Abruptly 338

Making Sure the Menus Stay Inside the Window 345

Making the Menus Display Over select Elements 354

Making a Folder Tree or Expanding Menuc..cooo. 361

Indicating Expanded Branches ina Menu ... 371

Allowing Only One Menu Branch to Be Open at Any Time 377

Opening the Current Sub-branch Automatically 378

SUMMATY ... 383

16. JavaScript and Accessibilitycccouuiiiiiiiiiiiiiiniiiiiiiiiiiiiii 385

Is JavaScript Inaccessible?cccccccciiiiimiiiiiciiii 386
What is Accessibility? ... 386
Who are the Affected Users? ..., 387

Making Scripts Accessible to the Keyboard 389

Using Device-independent Event Handlers 393

Making Scripts Accessible to the Keyboard as well as the Mouse 395
Rollovers and Revealing Contentcccccoiviiiii, 396
Form Validation ... 398
Drag-and-drop Functionalitycccooo 400
AJAX and other Remote Scripting Techniques 401

Making title Attribute Tooltips Display on Focus 402

Making a DHTML Menu Accessible to the Keyboard 411

Making a DHTML Menu Usable via the Keyboard 421

Making a DHTML Slider Control Accessible to the Keyboard 428

Making Scripts Accessible to Screen Readersccoo 436

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

The JavaScript Anthology

JavaScript Behaviorscccoooiiiii 438

Tricks and Hacks ... 449

Towards Best Practicecccccooiiiiiiiiiiiiiiiiiice. 453
SUMIMATY Lo 456

17. Using JavaScript with Flashcccociviiiiiiiminiiniiiiiiiniiinniinnnn, 457
Detecting whether Flash is Installed in a Browser 457
Communicating Between JavaScript and Flash 461
FSCommandccooiii 461
Flash/JavaScript Integration Kitcooo 464
SUMMATY ..o 465

18. Building Web Applications with JavaScriptccccccooiiiiiirivunniiiiiinnnnne 467
Retrieving Data Using XMLHttpRequestcccooociiiiiiiiiiiiin, 468
Requesting Data from a Server ..., 470

Parsing the Datac..ccooiiiiii 473

Cachingccoiiiiiiiiii 475

AJAX Frameworkscooooviiiiiiiiiie e, 476
Retrieving Data without Using XMLHttpRequestcccciiiiinnn. 476
Creating Custom Dialogs (Such as Popup Forms) 481
Creating Editable Elementscccccoiiiiiii 489
Controlling Text Selectionscccooiiiiiiiiiiiiiiiiii. 496
Creating an Auto-complete Text Field 502
SUMMATY ..o 514

19. Object Orientation in JavaScriptccccoviveriiiriinnniiiinnniiiniennninnennn 515
What’s so Good about Object Orientation?cccceevvviinnnee.n. 516
ADSEIACtION ...t 516
Encapsulationccccooiiiiiiiiiiiiiiee e 516

Class INheritance ..o, 517
Polymorphismccoiiiiiiiiiic 518

Object Based Code vs Object Oriented Codecccccoeevviiiiniiinneen. 518
Writing an Object Oriented Script ... 519
Creating Methods for an Object 521
Prototype-based Method Creationccccoocciiiiiiiiieninnninnn. 522
Modelling Inheritanceccocoiiii 526
Understanding SCOPeccooviiiiiiiiiiii 528
Implementing Namespacescccoooiiiiiiiiiiiiiiiii 531
SUMMATY Lot 533

20. Keeping up the Paceccceeviiiiiiniiiiiiininiencineccnne e 535
Making Scripts Run Faster ..o 536
Saving References to Objects you Use Frequently 536

viii Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Using Ternary Operators and Switch Statements 539

Optimizing Loopscooiiiiiiiiiiiii 542
AVOIdINgG @Valocciviiiiiiiiiii e 543
Avoiding Strict Warningsccccooviiiiiiiiii 544
Optimizing for a Particular Browsercccooo. 545
Writing Scripts Using Less Codeccccooiiiiiiiiiiiiii 548
Dividing Tasks into Functions (or Using OO) 548
Using Arrays and Iteration to Avoid Code Repetition 550
Compacting Conditions and Return Statements 551
Optimizing Scripts for the Web ... 552
Removing Comments and Unnecessary Whitespace 552
Compacting the Names of Variables and Properties 555
Avoiding Memory Leaksccccoiiiiii 556
Avoiding Circular Referencescccoooiiii 557
Cleaning Up After the Fact ... 558
Making Scripts Run Before the Load Event ... 560
SUMIMATY ©.oeiiiiiii e 563
INdEX .o 565

Order the print version of this book to get all 588 pages!

ix

http://www.sitepoint.com/launch/92257e

Preface

To many people, the word “JavaScript” conjures up memories of annoying popups,
irritating mouse-trails, and frustrating no-right-click scripts. If you’ve ever been
on the receiving end of such a script, you’ll know how tedious they can be. Yet
JavaScript is a mature, professional scripting language that’s used on the majority
of modern web sites, and is a key component in almost all web-based applications.
Hang on! Are we talking about the same technology here?

As with so many histories, both perceptions are reasonably accurate: JavaScript
does have a dubious reputation, which it earned mainly in the first dot com boom
when it was used for little else than opening popups, shielding code from casual
scrutiny, and adding pointless whizz-bang effects. And in recent years, as both
the web development community and the world at large have become more aware
of accessibility issues, JavaScript has been singled out as a cause of many problems,
though in reality, it’s not the technology itself that’s at fault—it’s the poorly
planned and careless use that has given JavaScript this reputation.

Yet with the increasing popularity of remote scripting techniques (popularly re-
ferred to as “AJAX”), JavaScript is enjoying something of a renaissance. Designers,
developers, and programmers from many different disciplines are becoming inter-
ested in—and impressed by—what was once the domain of specialists. Browser
vendors and other technology companies are taking another look at the potential
of this powerful language, as the line between the Web and the desktop becomes
increasingly blurred.

JavaScript is a key component in the development of a raft of new applications,
and there’s never been a better time to take an interest in it.

Who Should Read this Book?

Anyone who’s involved or interested in building web sites or web applications
should read this book.

If you're a webmaster looking for copy-and-paste solutions to everyday needs,
we have those solutions for you. If you're already an experienced JavaScript
programmer, you'll find in this book scripts and discussions that sit on the
bleeding edge of current practice. If you're a designer with an interest in the
coding side of things, or a student who’s just beginning to get into it, you'll find
many rich and beautiful examples to give you insight and ideas.

Preface

Whatever your current JavaScript knowledge, we hope you’ll find this book a
useful and inspirational resource for modern, best practice scripting.

What’s in this Book?

Chapter 1: Getting Started With JavaScript
This chapter, which is slightly more theoretical than the rest, provides an
overview of JavaScript’s capabilities and limitations, and introduces some
core best practices that we’ll be using through the rest of the book. It’s not
a beginners’ tutorial, nor a ground-up summary of the language, but it focuses
on finding the best ways to perform basic tasks, including practical solutions
for the problems that are encountered as we try to make scripts work together.

Chapter 2: Working with Numbers
This chapter looks at techniques for using and processing numbers in JavaS-
cript. It covers basic computation, number rounding, the generation and
constraint of random numbers, and the use of currency values, ordinals, and
other formatted numbers.

Chapter 3: Working with Strings
Text is the meat and drink of the Web, and processing text is one of the most
common tasks in web scripting. This chapter looks at ways of manipulating
strings to find information, store data, and prepare text for output, and in-
cludes a thorough introduction to regular expressions in JavaScript.

Chapter 4: Working with Arrays
This chapter introduces one the most powerful data-storage structures in
JavaScript: the array. We’ll talk about reading and writing data from an array;,
sorting and processing arrays, and using multidimensional arrays. We’ll also
discuss a similar data structure: the object literal.

Chapter 5: Navigating the Document Object Model
The DOM is an interface for manipulating individual parts of a document.
This chapter introduces and explores the DOM, and looks at how to create
and read the data from elements, attributes, and text.

Chapter 6: Processing and Validating Forms
In this chapter, we look at reading and writing data from different kinds of
form widget, address the tasks of validating and processing form data, and
discuss techniques for improving the usability of form-based interfaces.

Xii Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

What’s in this Book?

Chapter 7: Working with Windows and Frames
This chapter takes a cautious look at manipulating windows and scripting
across frames. These are the most controversial parts of the language, as they
have the potential to create serious usability and accessibility barriers, so this
chapter is centered firmly on techniques that try to avoid or alleviate these
problems.

Chapter 8: Working with Cookies
Cookies are the simplest and most reliable method for maintaining state-
persistence in JavaScript—they allow pages and applications to “remember”
who you are and what you’re doing. In this chapter, we introduce cookies
and show you how to use them effectively.

Chapter 9: Working with Dates and Times
It won’t win any prizes for glamour, but this chapter shows you how to get
the date and time in JavaScript, how to compare and process dates and times,
and how to output the final data in different formats and conventions.

Chapter 10: Working with Images
Images are an important part of most web designs, and this chapter explores
the basic techniques involved in scripting for them. We move from simple
tasks like preloading, randomly selecting, swapping, and cross-fading images,
to more complex slide show, progress indicator, and image-based clock scripts.

Chapter 11: Detecting Browser Differences
This short chapter outlines techniques for dealing with different browsers
and rendering modes. In it, we explain when and where it’s appropriate to
use browser detection and object detection, and how you can combine these
techniques to get the most robust information.

Chapter 12: Using JavaScript with CSS
In this chapter, we look at how to read and write the styles from a single
element or group of elements, how to read and write CSS rules to an existing
or created style sheet, and how to build a style sheet switcher.

Chapter 13: Basic Dynamic HTML
DHTML uses HTML, the DOM, and CSS to bring static content to life, and
although the term DHTML is disparaged in some quarters, we still believe
it’s a useful and relevant way of describing this kind of scripting. In this
chapter, we cover event-handling in all its flavors, detecting the position and
size of an object, tracking the mouse, and making elements appear and dis-

Order the print version of this book to get all 588 pages! Xiii

http://www.sitepoint.com/launch/92257e

Preface

appear. We'll also begin to look at rearranging the DOM dynamically with
a neat table-sorting script.

Chapter 14: Time and Motion
This chapter advances the ideas from Chapter 13 into more complex forms
of scripting that use motion and animation. We’ll look at timers in JavaScript,
and learn how to use them for both simple and more sophisticated animations.
We'll also cover drag-and-drop functionality, and put it to use selecting and
sorting information, as well as creating scrollers, sliders, and transition effects.

Chapter 15: DHTML Menus and Navigation
This chapter enters the complex arena of DHTML menus with two major
scripts—a drop-down or fly-out menu, and a folder tree or expanding menu.
For each menu, we’ll create a core navigation structure using clean, semantic
code. Then, we’ll improve on each script with usability and accessibility en-
hancements, including submenu indicator arrows, open and close timers, and
automatic repositioning (so that a menu never runs off the page’s edge). This

chapter also includes solutions for the problem of menus overlapping select
elements in Windows IE 5 and IE 6.

Chapter 16: JavaScript and Accessibility
This chapter provides an overview of the current state of play regarding
JavaScript and accessibility. It’s focused on ideas and techniques for making
scripts accessible to the keyboard, and also touches on how scripting may
impact on people with learning or cognitive disabilities. We’ll also examine
a range of different scripts, including AJAX applications, to see how they
behave with screen readers.

Chapter 17: Using JavaScript with Flash
In this chapter, we look at the narrow alliance between these two technologies,
learning to detect whether a user has the Flash plugin, and mastering commu-
nication between JavaScript and Flash.

Chapter 18: Building Web Applications with JavaScript
This chapter delves into the exciting area of online application design, includ-
ing data retrieval using XMLHttpRequest, as well as the older technique of
using iframes. We’'ll also talk about creating custom dialogs, building editable
elements like rich-text entry fields, and controlling and creating text selections
to generate an auto-complete search field.

Xiv Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

The Book’s Web Site

Chapter 19: Object Orientation in JavaScript
Object oriented programming is generally considered the best approach to
large-scale programming projects, and in this chapter we introduce OOP,
exploring its core concepts and benefits. We’ll cover the practical techniques
involved in creating an object oriented or object based script, and we’ll talk
about scope, inheritance, and object namespacing.

Chapter 20: Keeping up the Pace
The final chapter looks at everyday techniques for writing faster, more efficient
code that’s shorter and uses less memory. We’ll also cover more brutal tech-
niques for optimizing and obfuscating production code, but with the warning
that some optimizations are more trouble than they’re worth!

The Book’s Web Site

Located at http://www.sitepoint.com/books/jsantl, the web site supporting this
book will give you access to the following facilities.

The Code Archive

As you progress through the text, you’ll note a number of references to the code
archive. This is a downloadable ZIP archive that contains complete code for all
the examples presented in this book. You can grab it on the book’s web site at
http://www.sitepoint.com/books/jsant1/code.php.

Updates and Errata

The Errata page on the book’s web site will always have the latest information
about known typographical and code errors, and necessary updates for changes
to technologies. Visit it at http://www.sitepoint.com/books/jsant1/errata.php.

The SitePoint Forums

While we’ve made every attempt to anticipate any questions you may have, and
answer them in this book, there’s no way that any book could teach you everything
you’ll ever need to know about using JavaScript in your web development projects.
If you have a question about anything in this book, the best place to go for a
quick answer is http:/www.sitepoint.com/forums/—SitePoint’s vibrant and
knowledgeable community.

Order the print version of this book to get all 588 pages! XV

http://www.sitepoint.com/books/jsant1
http://www.sitepoint.com/books/jsant1/code.php
http://www.sitepoint.com/books/jsant1/errata.php
http://www.sitepoint.com/forums/
http://www.sitepoint.com/launch/92257e

Preface

The SitePoint Newsletters

In addition to books like this one, SitePoint offers free email newsletters.

The SitePoint Tech Times covers the latest news, product releases, trends, tips, and
techniques for all technical aspects of web development. The long-running SitePoint
Tribune is a biweekly digest of the business and moneymaking aspects of the Web.
Whether you're a freelance developer looking for tips to score that dream contract,
or a marketer striving to keep abreast of changes to the major search engines,
this is the newsletter for you. The SitePoint Design View is a monthly compilation
of the best in web design. From new CSS layout methods to subtle Photoshop
techniques, SitePoint’s chief designer shares his years of experience in its pages.

Browse the archives or sign up to any of SitePoint’s free newsletters at
http://www.sitepoint.com/newsletter/.

Your Feedback

If you can’t find an answer through the forums, or you wish to contact us for any
other reason, the best place to write is books@sitepoint.com. We have a well-
manned email support system set up to track your inquiries, and if our support
staff are unable to answer your question, they send it straight to us. Suggestions
for improvement, as well as notices of any mistakes you may find, are especially
welcome.

Acknowledgements

I'd like to thank all those who helped and supported me while writing this book,
particularly to Eddie and Debi, Jon and Kim, who provided as much encourage-
ment as they did practical support. I’d also like to thank Dave Evans, a significant
influence from my early days as a developer.

—James Edwards

xvi Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/launch/92257e

Getting Started with JavaScript

As we hope to demonstrate in many practical solutions throughout this book,
JavaScript is an amazingly useful language that offers many unique benefits. With
a little consideration for how scripted functionality degrades, you can use Java-
Script to bring a whole range of functional, design and usability improvements
to your web sites.

Let’s begin with an introduction to JavaScript, exploring what it’s for, and how
we can use it.

JavaScript Defined

JavaScript is a scripting language that’s used to add interactivity and dynamic
behaviors to web pages and applications. JavaScript can interact with other
components of a web page, such as HITML and CSS, to make them change in
real time, or respond to user events.

You’ll undoubtedly have seen JavaScript in the source code of web pages. It might
have been inline code in an HTML element, like this:

It might have appeared as a script element linking to another file:

Chapter 1: Getting Started with JavaScript

<script type="text/javascript" src="myscript.js"></script>
Or it may have had code directly inside it:

<script type="text/javascript">
function saySomething(message)

{

alert(message);

}
saySomething('Hello world!");

</script>

Don’t worry about the differences between these snippets yet. There are quite a
few ways—both good and bad—in which we can add JavaScript to a web page.
We'll look at these approaches in detail later in this chapter.

JavaScript was developed by Netscape and implemented in Netscape 2, although
it was originally called LiveScript. The growing popularity of another language,
Java, prompted Netscape to change the name in an attempt to cash in on the
connection, as JavaScript provided the ability to communicate between the
browser and a Java applet.

But as the language was developed both by Netscape, in its original form, and
by Microsoft, in the similar-but-different JScript implementation, it became clear
that web scripting was too important to be left to the wolves of vendor competi-
tion. So, in 1996, development was handed over to an international standards
body called ECMA, and JavaScript became ECMAScript or ECMA-262.

Most people still refer to it as JavaScript, and this can be a cause of confusion:
apart from the name and similarities in syntax, Java and JavaScript are nothing
alike.

JavaScript’s Limitations

JavaScript is most commonly used as a client-side language, and in this case
the “client” refers to the end-user’s web browser, in which JavaScript is interpreted
and run. This distinguishes it from server-side languages like PHP and ASP,
which run on the server and send static data to the client.

Since JavaScript does not have access to the server environment, there are many
tasks that, while trivial when executed in PHP, simply cannot be achieved with
JavaScript: reading and writing to a database, for example, or creating text files.
But since JavaScript does have access to the client environment, it can make de-

2 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Security Restrictions

cisions based on data that server-side languages simply don’t have, such as the
position of the mouse, or the rendered size of an element.

What About ActiveX?

hote

If you're already quite familiar with Microsoft’s JScript, you might be
thinking “but JavaScript can do some of these things using ActiveX,” and
that’s true—but ActiveX is not part of ECMAScript. ActiveX is a Windows-
specific mechanism for allowing Internet Explorer to access COM (the
Component Object Model at the heart of Windows scripting technology)
and generally only runs in trusted environments, such as an intranet. There
are some specific exceptions we’ll come across—examples of ActiveX controls
that run without special security in IE (such as the Flash plugin, and
XMLHttpRequest)—but for the most part, scripting using ActiveX is outside
the scope of this book.

Usually, the computer on which a client is run will not be as powerful as a server,
so JavaScript is not the best tool for doing large amounts of data processing. But
the immediacy of data processing on the client makes this option attractive for
small amounts of processing, as a response can be received straight away; form
validation, for instance, makes a good candidate for client-side processing.

But to compare server-side and client-side languages with a view to which is
“better” is misguided. Neither is better—they’re tools for different jobs, and the
functional crossover between them is small. However, increased interactions
between client-side and server-side scripting are giving rise to a new generation of
web scripting, which uses technologies such as XMLHttpRequest to make requests
for server data, run server-side scripts, and then manage the results on the client
side. We'll be looking into these technologies in depth in Chapter 18.

Security Restrictions

As JavaScript operates within the realm of highly sensitive data and programs,
its capabilities have been restricted to ensure that it can’t be used maliciously.
As such, there are many things that JavaScript simply is not allowed to do. For
example, it cannot read most system settings from your computer, interact directly
with your hardware, or cause programs to run.

Also, some specific interactions that would normally be allowed for a particular
element are not permitted within JavaScript, because of that element’s properties.
For example, changing the value of a form <input> is usually no problem, but if
it’s a file input field (e.g., <input type="file">), writing to it is not allowed at

Order the print version of this book to get all 588 pages! 3

http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

all—a restriction that prevents malicious scripts from making users upload a file
they didn’t choose.

There are quite a few examples of similar security restrictions, which we’ll expand
on as they arise in the applications we’ll cover in this book. But to summarize,
here’s a list of JavaScript’s major limitations and security restrictions, including
those we’ve already seen. JavaScript cannot:

[dpen and read files directly (except under specific circumstances, as detailed
in Chapter 18).

[dreate or edit files on the user’s computer (except cookies, which are discussed
in Chapter 8).

[1kead HTTP POST data.

[1kad system settings, or any other data from the user’s computer that is not
made available through language or host objects.’

[1hodify the value of a file input field.
[alter a the display of a document that was loaded from a different domain.

[dlose or modify the toolbars and other elements of a window that was not
opened by script (i.e., the main browser window).

Ultimately, JavaScript might not be supported at all.

It’s also worth bearing in mind that many browsers include options that allow
greater precision than simply enabling or disabling JavaScript. For example, Opera
includes options to disallow scripts from closing windows, moving windows,
writing to the status bar, receiving right-clicks ... the list goes on. There’s little
you can do to work around this, but mostly, you won’t need to—such options
have evolved to suppress “annoying” scripts (status bar scrollers, no-right-click
scripts, etc.) so if you stay away from those kinds of scripts, the issue will come
up only rarely:.

"Host objects are things like window and screen, which are provided by the environment rather
than the language itself.

4 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

JavaScript Best Practices

JavaScript Best Practices

JavaScript best practices place a strong emphasis on the question of what you
should do for people whose browsers don’t support scripting, who have scripting
turned off, or who are unable to interact with the script for another reason (e.g.,
the user makes use of an assistive technology that does not support scripting).

That final issue is the most difficult to address, and we’ll be focusing on solutions
to this problem in Chapter 16. In this section, I'd like to look at three core
principles of good JavaScript:

progressive enhancement providing for users who don’t have JavaScript
unobtrusive scripting separating content from behavior
consistent coding practice using braces and semicolon terminators

The first principle ensures that we’re thinking about the bigger picture whenever
we use a script on our site. The second point makes for easier maintenance on
our end, and better usability and graceful degradation® for the user. The third
principle makes code easier to read and maintain.

Providing for Users who Don’t Have
JavaScript (Progressive Enhancement)

There are several reasons why users might not have JavaScript:

[They’re using a device that doesn’t support scripting at all, or supports it in
a limited way.

[They’re behind a proxy server or firewall that filters out JavaScript.
[—They have JavaScript switched off deliberately.

The first point covers a surprisingly large and ever-growing range of devices, in-
cluding small-screen devices like PDAs, mid-screen devices including WebTV

2Graceful degradation means that if JavaScript is not supported, the browser can naturally fall back
on, or “degrade” to, non-scripted functionality.

Order the print version of this book to get all 588 pages! 5

http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

and the Sony PSP, as well as legacy JavaScript browsers such as Opera 5 and
Netscape 4.

The last point in the list above is arguably the least likely (apart from other de-
velopers playing devil’s advocate!), but the reasons aren’t all that important: some
users simply don’t have JavaScript, and we should accommodate them. There’s
no way to quantify the numbers of users who fall into this category, because de-
tecting JavaScript support from the server is notoriously unreliable, but the figures
I've seen put the proportion of users who have JavaScript switched off between
5% and 20%, depending on whether you describe search engine robots as “users.”

Solution

The long-standing approach to this issue is to use the HTML noscript element,
the contents of which are rendered by browsers that don’t support the script
element at all, and browsers that support it but have scripting turned off.

Although it’s a sound idea, in practice this solution has become less useful over
time, because noscript cannot differentiate by capability. A browser that offers
limited JavaScript support is not going to be able to run a complicated script,
but such devices are script-capable browsers, so they won’t parse the noscript
element either. These browsers would end up with nothing.

A better approach to this issue is to begin with static HITML, then use scripting
to modify or add dynamic behaviors within that static content.

Let’s look at a simple example. The preferred technique for making DHTML
menus uses an unordered list as the main menu structure. We’ll be devoting the
whole of Chapter 15 to this subject, but this short example illustrates the point:

<ul id="menu">
Home</1li>
About</1li>
Contact</1li>

<script type="text/javascript" src="menu.js"></script>

The list of links is plain HTML, so it exists for all users, whether or not they have
scripting enabled. If scripting is supported, our menu. js script can apply dynamic
behaviors, but if scripting isn’t supported, the content still appears. We haven’t
differentiated between devices explicitly—we’ve just provided content that’s dy-
namic if the browser can handle it, and static if not.

6 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Providing for Users who Don’t Have JavaScript (Progressive Enhancement)

Discussion

The “traditional” approach to this scenario would be to generate a separate, dy-
namic menu in pure JavaScript, and to have fallback static content inside a no-
script element:

<script type="text/javascript" src="menu.js"></script>

<noscript>

Home</1li>
About</1li>
Contact</1li>

</noscript>

But, as we’ve already seen, a wide range of devices will fall though this net, because
JavaScript support is no longer an all-or-nothing proposition. The above approach
provides default content to all devices, and applies scripted functionality only if
it works.

This scripting approach is popularly referred to as progressive enhancement,
and it’s a methodology we’ll be using throughout this book.

Don’t Ask!

Neither this technique nor the noscript element should be used to add a
message that reads, “Please turn on JavaScript to continue.” At best, such a
message is presumptuous (“Why should 1?”); at worst it may be unhelpful
(“I can’t!”) or meaningless (“What’s JavaScript?”). Just like those splash
pages that say, “Please upgrade your browser,” these messages are as useful
to the average web user as a road sign that reads, “Please use a different car.”

Occasionally, you may be faced with a situation in which equivalent func-
tionality simply cannot be provided without JavaScript. In such cases, I think
it’s okay to have a static message that informs the user of this incompatibility
(in nontechnical terms, of course). But, for the most part, try to avoid
providing this kind of message unless it’s literally the only way.

Order the print version of this book to get all 588 pages! 7

http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

Separating Content from Behavior
(Unobtrusive Scripting)

Separating content from behavior means keeping different aspects of a web page’s
construction apart. Jeffrey Zeldman famously refers to this as the “three-legged
stool” of web development®—comprising content (HTML), presentation (CSS),
and behavior (JavaScript)—which emphasizes not just the difference in each as-
pect’s functioning, but also the fact that they should be separated from one an-
other.

Good separation makes for sites that are easier to maintain, are more accessible,
and degrade well in older or lower-spec browsers.

Solution

At one extreme, which is directly opposed to the ideal of separating content from
behavior, we can write inline code directly inside attribute event handlers. This
is very messy, and generally should be avoided:

<div id="content"
onmouseover="this.style.borderColor='red""
onmouseout="this.style.borderColor="'black"'">

We can improve the situation by taking the code that does the work and abstract-
ing it into a function:

<div id="content"
onmouseover="changeBorder('red')"
onmouseout="changeBorder('black')">

Defining a function to do the work for us lets us provide most of our code in a
separate JavaScript file:

File: separate-content-behaviors.js (excerpt)
function changeBorder(element, to)

{

element.style.borderColor = to;

}

3Zeldman, J. Designing with Web Standards. New Riders, 2003.

8 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Separating Content from Behavior (Unobtrusive Scripting)

But a much better approach is to avoid using inline event handlers completely.
Instead, we can make use of the Document Object Model (DOM) to bind the
event handlers to elements in the HTML document. The DOM is a standard
programming interface by which languages like JavaScript can access the contents
of HTML documents, removing the need for any JavaScript code to appear in
the HTML document itself. In this example, our HTML code would look like
the following:

<div id="content">
Here’s the scripting we’d use:

File: separate-content-behaviors.js
function changeBorder(element, to)

{
}

element.style.borderColor = to;

var contentDiv = document.getElementById('content');

contentDiv.onmouseover = function()

{
b

changeBorder('red');

contentDiv.onmouseout = function()

{
b

changeBorder('black');

This approach allows us to add, remove, or change event handlers without having
to edit the HTML, and since the document itself does not rely on or refer to the
scripting at all, browsers that don’t understand JavaScript will not be affected by
it. This solution also provides the benefits of reusability, because we can bind
the same functions to other elements as needed, without having to edit the
HTML.

This solution hinges on our ability to access elements through the DOM, which
we’ll cover in depth in Chapter 5.

The Benefits of Separation
note

By practicing good separation of content and behavior, we gain not only a
practical benefit in terms of smoother degradation, but also the advantage
of thinking in terms of separation. Since we’ve separated the HTML and

Order the print version of this book to get all 588 pages! 9

http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

JavaScript, instead of combining them, when we look at the HTML we’re
less likely to forget that its core function should be to describe the content of
the page, independent of any scripting.

Andy Clarke refers to the web standards trifle,* which is a useful analogy,
A trifle looks the way a good web site should: when you look at the bowl,
you can see all the separate layers that make up the dessert. The opposite
of this might be a fruit cake: when you look at the cake, you can’t tell what
each different ingredient is. All you can see is a mass of cake.

Discussion

It’s important to note that when you bind an event handler to an element like
this, you can’t do it until the element actually exists. If you put the preceding
script in the head section of a page as it is, it would report errors and fail to work,
because the content div has not been rendered at the point at which the script
is processed.

The most direct solution is to put the code inside a load event handler. It will
always be safe there because the load event doesn’t fire until after the document
has been fully rendered:

window.onload = function()

{

var contentDiv = document.getElementById('content');

b

Or more clearly, with a bit more typing:
window.onload = init;

function init()

{

var contentDiv = document.getElementById('content');

, :

The problem with the load event handler is that only one script on a page can
use it; if two or more scripts attempt to install load event handlers, each script
will override the handler of the one that came before it. The solution to this

* http://www.stuffandnonsense.co.uk/archives/web_standards_trifle.html

10 Order the print version of this book to get all 588 pages!

http://www.stuffandnonsense.co.uk/archives/web_standards_trifle.html
http://www.sitepoint.com/launch/92257e

Using Braces and Semicolons (Consistent Coding Practice)

problem is to respond to the load event in a more modern way; we’ll look at this
shortly, in “Getting Multiple Scripts to Work on the Same Page”.

Using Braces and Semicolons (Consistent
Coding Practice)

In many JavaScript operations, braces and semicolons are optional, so is there
any value to including them when they’re not essential?

Solution

Although braces and semicolons are often optional, you should always include
them. This makes code easier to read—by others, and by yourself in future—and
helps you avoid problems as you reuse and reorganize the code in your scripts
(which will often render an optional semicolon essential).

For example, this code is perfectly valid:

File: semicolons-braces.js (excerpt)

if (something) alert('something')
else alert('nothing')

This code is valid thanks to a process in the JavaScript interpreter called semi-
colon insertion. Whenever the interpreter finds two code fragments that are
separated by one or more line breaks, and those fragments wouldn’t make sense
if they were on a single line, the interpreter treats them as though a semicolon
existed between them. By a similar mechanism, the braces that normally surround
the code to be executed in if-else statements may be inferred from the syntax,
even though they’re not present. Think of this process as the interpreter adding
the missing code elements for you.

Even though these code elements are not always necessary; it’s easier to remember
to use them when they are required, and easier to read the resulting code, if you
do use them consistently.

Our example above would be better written like this:
File: semicolons-braces.js (excerpt)

if (something) { alert('something'); }
else { alert('nothing'); }

Order the print version of this book to get all 588 pages! 11

http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

This version represents the ultimate in code readability:

File: semicolons-braces.js (excerpt)

if (something)
{

alert('something');
}
else
{

alert('nothing');
}

Using Function Literals
note
As you become experienced with the intricacies of the JavaScript language,
it will become common for you to use function literals to create anonymous
functions as needed, and assign them to JavaScript variables and object
properties. In this context, the function definition should be followed by a
semicolon, which terminates the variable assignment:

var saySomething = function(message)

{ .
b

Adding a Script to a Page

Before a script can begin doing exciting things, you have to load it into a web

page. There are two techniques for doing this, one of which is distinctly better
than the other.

Solution

The first and most direct technique is to write code directly inside a script ele-
ment, as we’'ve seen before:

<script type="text/javascript">
function saySomething(message)
{

alert(message);

}

12

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Putting HTML Comments Around Code

saySomething('Hello world!"');
</script>

The problem with this method is that in legacy and text-only browsers—those
that don’t support the script element at all—the contents may be rendered as
literal text.

A better alternative, which avoids this problem, is always to put the script in an
external JavaScript file. Here’s what that looks like:

<script type="text/javascript" src="what-is-javascript.js"
></script>

This loads an external JavaScript file named what-is-javascript.js. The file
should contain the code that you would otherwise put inside the script element,
like this:

File: what-is-javascript.js
function saySomething(message)

{

alert(message);

}
saySomething('Hello world!"');

When you use this method, browsers that don’t understand the script element
will ignore it and render no contents (since the element is empty), but browsers
that do understand it will load and process the script. This helps to keep scripting
and content separate, and is far more easily maintained—you can use the same
script on multiple pages without having to maintain copies of the code in multiple
documents.

Discussion

You may question the recommendation of not using code directly inside the
script element. “No problem,” you might say. “I'll just put HTML comments
around it.” Well, I'd have to disagree with that: using HTML comments to “hide”
code is a very bad habit that we should avoid falling into.

Putting HTML Comments Around Code

A validating parser is not required to read comments, much less to process them.
The fact that commented JavaScript works at all is an anachronism—a throwback

Order the print version of this book to get all 588 pages! 13

http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

to an old, outdated practice that makes an assumption about the document that
might not be true: it assumes that the page is served to a non-validating parser.

All the examples in this book are provided in HTML (as opposed to XHTML),
so this assumption is reasonable, but if you're working with XHTML (correctly
served with a MIME type of application/xhtml+xml), the comments in your
code may be discarded by a validating XML parser before the document is pro-
cessed by the browser, in which case commented scripts will no longer work at
all. For the sake of ensuring forwards compatibility (and the associated benefits
to your own coding habits as much as to individual projects), I strongly recom-
mend that you avoid putting comments around code in this way. Your JavaScript
should always be housed in external JavaScript files.

The language Attribute

The language attribute is no longer necessary. In the days when Netscape 4 and
its contemporaries were the dominant browsers, the <script> tag’s language
attribute had the role of sniffing for up-level support (for example, by specifying
javascript1.3), and impacted on small aspects of the way the script interpreter
worked.

But specifying a version of JavaScript is pretty meaningless now that JavaScript
is ECMAScript, and the language attribute has been deprecated in favor of the
type attribute. This attribute specifies the MIME type of included files, such as
scripts and style sheets, and is the only one you need to use:

<script type="text/javascript">

Technically, the value should be text/ecmascript, but Internet Explorer doesn’t
understand that. Personally, I’d be happier if it did, simply because javascript
is (ironically) a word I have great difficulty typing—I’ve lost count of the number
of times a script failure occurred because I'd typed type="text/javsacript".

Getting Multiple Scripts to Work on the
Same Page

When multiple scripts don’t work together, it’s almost always because the scripts
want to assign event handlers for the same event on a given element. Since each
element can have only one handler for each event, the scripts override one anoth-
er’s event handlers.

14 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Getting Multiple Scripts to Work on the Same Page

Solution

The usual suspect is the window object’s load event handler, because only one
script on a page can use this event; if two or more scripts are using it, the last
one will override those that came before it.

We could call multiple functions from inside a single load handler, like this:

window.onload = function()

{

firstFunction();
secondFunction();

}

But, if we used this code, we’d be tied to a single piece of code from which we’d
have to do everything we needed to at load time. A better solution would provide
a means of adding load event handlers that don’t conflict with other handlers.

When the following single function is called, it will allow us to assign any number
of load event handlers, without any of them conflicting:

File: add-load-listener.js
function addLoadListener(fn)

{

if (typeof window.addEventListener != 'undefined')
{

window.addEventListener('load', fn, false);
}
else if (typeof document.addEventListener != 'undefined')
{

document.addEventListener('load', fn, false);
else if (typeof window.attachEvent != 'undefined')
{

window.attachEvent('onload', fn);
}
else
{

var oldfn = window.onload;

if (typeof window.onload != 'function')

{

window.onload = fn;

}

else

{

window.onload function()

Order the print version of this book to get all 588 pages! 15

http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

oldfn();
fn();
b
}
}
}

Once this function is in place, we can use it any number of times:

addLoadListener(firstFunction) ;
addLoadListener (secondFunction);
addLoadListener (twentyThirdFunction);

You get the ideal

Discussion

JavaScript includes methods for adding (and removing) event listeners, which
operate much like event handlers, but allow multiple listeners to subscribe to a
single event on an element. Unfortunately, the syntax for event listeners is com-
pletely different in Internet Explorer than it is in other browsers: where IE uses
a proprietary method, others implement the W3C Standard. We’ll come across
this dichotomy frequently, and we’ll discuss it in detail in Chapter 13.

The W3C standard method is called addEventListener:
window.addEventListener('load', firstFunction, false);
The IE method is called attachEvent:
window.attachEvent('onload', firstFunction);

As you can see, the standard construct takes the name of the event (without the
“on” prefix), followed by the function that’s to be called when the event occurs,
and an argument that controls event bubbling (see Chapter 13 for more details
on this). The IE method takes the event handler name (including the “on” prefix),
followed by the name of the function.

To put these together, we need to add some tests to check for the existence of
each method before we try to use it. We can do this using the JavaScript operator
typeof, which identifies different types of data (as "string", "number",
"boolean", "object", "array", "function", or "undefined"). A method that
doesn’t exist will return "undefined".

16 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Getting Multiple Scripts to Work on the Same Page

if (typeof window.addEventListener != 'undefined')

{

: window.addEventListener is supported

}

There’s one additional complication: in Opera, the load event that can trigger
multiple event listeners comes from the document object, not the window. But
we can’t just use document because that doesn’t work in older Mozilla browsers
(such as Netscape 6). To plot a route through these quirks we need to test for
window.addEventListener, then document.addEventListener, then window.at-
tachEvent, in that order.

Finally, for browsers that don’t support any of those methods (Mac IE 5, in
practice), the fallback solution is to chain multiple old-style event handlers to-
gether so they’ll get called in turn when the event occurs. We do this by dynam-
ically constructing a new event handler that calls any existing handler before it
calls the newly-assigned handler when the event occurs.

File: add-load-listener.js (excerpt)
var oldfn = window.onload;

if (typeof window.onload != 'function')
{
window.onload = fn;
}
else
{
window.onload = function()
oldfn();
fn();
};

}

Don’t worry if you don’t understand the specifics of how this works—we’ll explore
the techniques involved in much greater detail in Chapter 13. There, we’ll learn
that event listeners are useful not just for the load event, but for any kind of
event-driven script.

>This technique was pioneered by Simon Willison
[http://www.sitepoint.com/blogs/2004/05/2 6/closures-and-executing-javascript-on-page-load/].

Order the print version of this book to get all 588 pages! 17

http://www.sitepoint.com/blogs/2004/05/26/closures-and-executing-javascript-on-page-load/
http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

Hiding JavaScript Source Code

If you’ve ever created something that you’re proud of, you’ll understand the desire
to protect your intellectual property. But JavaScript on the Web is an open-source
language by nature; it comes to the browser in its source form, so if the browser
can run it, a person can read it.

There are a few applications on the Web that claim to offer source-code encryp-
tion, but in reality, there’s nothing you can do to encrypt source-code that another
coder couldn’t decrypt in seconds. In fact, some of these programs actually cause
problems: they often reformat code in such a way as to make it slower, less effi-
cient, or just plain broken. My advice? Stay away from them like the plague.

But still, the desire to hide code remains. There is something that you can do to
obfuscate, if not outright encrypt, the code that your users can see.

Solution

Code that has been stripped of all comments and unnecessary whitespace is very
difficult to read, and as you might expect, extracting individual bits of function-
ality from such code is extremely difficult. The simple technique of compressing
your scripts in this way can put-off all but the most determined hacker. For ex-
ample, take this code:

File: obfuscate-code.js (excerpt)
var oldfn = window.onload;

if (typeof window.onload != 'function')
{ window.onload = fn;
}
else
{

window.onload = function()

{ oldfn();

fn();

};

}

We can compress that code into the following two lines simply by removing un-
necessary whitespace:

18 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Debugging a Script

File: obfuscate-code.js (excerpt)

var oldfn=window.onload;if (typeof window.onload!='function') {
window.onload=fn;}else{window.onload=function(){oldfn();fn();};}

However, remember that important word—unnecessary. Some whitespace is es-
sential, such as the single spaces after var and typeof.

Discussion

This practice has advantages quite apart from the benefits of obfuscation. Scripts
that are stripped of comments and unnecessary whitespace are smaller; therefore,
they’re faster loading, and may process more quickly:

But please do remember that the code must remain strictly formatted using
semicolon line terminators and braces (as we discussed in “Using Braces and
Semicolons (Consistent Coding Practice)”); otherwise, the removal of line breaks
will make lines of code run together, and ultimately cause errors.

Before you start compression, remember to make a copy of the script. I know it
seems obvious, but I've made this mistake plenty of times, and it’s all the more
galling for being so elementary! What I do these days is write and maintain scripts
in their fully spaced and commented form, then run them through a bunch of
search/replace expressions just before they’re published. Usually, I keep two
copies of a script, named myscript.js and myscript-commented. js, or something
similar.

We’ll come back to this subject in Chapter 20, where we’ll discuss this among a
range of techniques for improving the speed and efficiency of scripts, as well as
reducing the amount of physical space they require.

Debugging a Script

Debugging is the process of finding and (hopefully) fixing bugs. Most browsers
have some kind of bug reporting built in, and a couple of external debuggers are
also worth investigating.

Order the print version of this book to get all 588 pages! 19

http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

Understanding a Browser’s Built-in Error
Reporting

Opera, Mozilla browsers (such as Firefox), and Internet Explorer all have decent
bug reporting functionality built in, but Opera and Mozilla’s debugging tools are
the most useful.

Opera
Open the JavaScript console from Tools > Advanced > JavaScript console. You
can also set it to open automatically when an error occurs by going to Tools
> Preferences > Advanced > Content, then clicking the JavaScript options
button to open its dialog, and checking Open JavaScript console on error.

Firefox and other Mozilla browsers
Open the JavaScript console from Tools > JavaScript console.

Internet Explorer for Windows
Go to Tools > Internet Options > Advanced and uncheck the option Disable
script debugging, then check the option Display a notification about every script
error, to make a dialog pop up whenever an error occurs.

Internet Explorer for Mac
Go to Explorer > Preferences > Web Browser > Web Content and check the
Show scripting error alerts option.

Safari doesn’t include bug reporting by default, but recent versions have a “secret”
Debug menu, including a JavaScrigt console, which you can enable by entering
the following Terminal command:

$ defaults write com.apple.safari IncludeDebugMenu -bool true

You can also use an extension called Safari Enhancer,” which includes an option
to dump JavaScript messages to the Mac OS Console; however, these messages
are not very helpful.

Understanding the various browsers” console messages can take a little practice,
because each browser gives such different information. Here’s an example of an
error—a mistyped function call:

®The $ represents the command prompt, and is not to be typed.
7 http://www.lordofthecows.com/safari_enhancer.php

20 Order the print version of this book to get all 588 pages!

http://www.lordofthecows.com/safari_enhancer.php
http://www.sitepoint.com/launch/92257e

Understanding a Browser’s Built-in Error Reporting

function saySomething(message)
{
alert(message);
}
saySometing('Hello world');

Firefox gives a concise but very accurate report, which includes the line number
at which the error occurred, and a description, as shown in Figure 1.1.

Figure 1.1. The JavaScript errors console in Firefox

%9 1avaScript Console] =1oO| x|

&||| Errors Warnings Messages | Clear

I Ewaluate

Errar: savSometing is not defined
@ Source File: btp v sitepoint corny/test . s Line: 7

As Figure 1.2 illustrates, Opera gives an extremely verbose report, including a
backtrace to the event from which the error originated, a notification of the line
where it occurred, and a description.

A backtrace helps when an error occurs in code that was originally called by
other code; for example, where an event-handler calls a function that goes on to
call a second function, and it’s at this point that the error occurs. Opera’s console
will trace this process back through each stage to its originating event or call.

Internet Explorer gives the fairly basic kind of report shown in Figure 1.3. It
provides the number of the line at which the interpreter encountered the error
(this may or may not be close to the true location of the actual problem),® plus

8Internet Explorer is particularly bad at locating errors in external JavaScript files. Often, the line
number it will report as the error location will actually be the number of the line at which the script
is loaded in the HTML file.

Order the print version of this book to get all 588 pages! 21

http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

a summary of the error type, though it doesn’t explain the specifics of the error
itself.

Figure 1.2. The JavaScript console in Opera

1 JJavaScript console E ||:||ll

http: Afvy. sitepoint. con/test. i3 =
Inline script thread
Error:
name: ReferenceError
message: Statement on line 7: Reference to undefined wvariahle: sayiometing
Backtrace:

Line 7 of linked script http:/fuvww. sitepoint. con/test.is

saydoneting ("Hello world™):

T cee | e B oo b

Figure 1.3. The JavaScript console in Windows IE

ernet Explorer) x|

j Problemns with this ‘Web page might prevent it from being displaved properly

or functioning properly. 1n the future, you can displap this message by
double-clicking the warning icon dizplayed in the status bar.

i Alwayz display this message when a page contains ermors.

Hide Details <<

Like: 8

Char: 1

Error; Object expected

Ciode: 0

URL: hitp: e step oint.comdtest, himl

Breviaus Hewt

22 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Using alert

As you probably gathered, I'm not overly impressed by Internet Explorer’s error
reporting, but it is vastly better than nothing: at least you know that an error has
occurred.

Using alert

The alert function is a very useful means of analyzing errors—you can use it at
any point in a script to probe objects and variables to see if they contain the data
you expect. For example, if you have a function that has several conditional
branches, you can add an alert within each condition to find out which is being
executed:

File: debugging-dialogs.js
function checkAge(years)

{
if (years < 13)

{
alert('less than 13');

: other scripting

}
else if (years >= 13 && years <= 21)

{
alert('13 to 21');

: other scripting

}

else

{
alert('older');

: other scripting
}
}

Maybe the value for years is not coming back as a number, like it should. You
could add to the start of your script an alert that tests the variable to see what
type it is:

function checkAge(years)

{
alert(typeof years);

Order the print version of this book to get all 588 pages! 23

http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

In theory, you can put any amount of information in an alert dialog, although
a very long string of data could create such a wide dialog that some of the inform-
ation would be clipped or outside the window. You can avoid this by formatting
the output with escape characters, such as \n for a line break.

Using try-catch

The try-catch construct is an incredibly useful way to get a script just to “try
something,” leaving you to handle any errors that may result. The basic construct
looks like this:

File: debugging-trycatch.js (excerpt)
try
{

: some code

catch (err)

{
}

: this gets run if the try{} block results in an error

If you’re not sure where an error’s coming from, you can wrap a try-catch around
a very large block of code to trap the general failure, then tighten it around pro-
gressively smaller chunks of code within that block. For example, you could wrap
a try brace around the first half of a function (at a convenient point in the code),
then around the second half, to see where the error occurs; you could then divide
the suspect half again, at a convenient point, and keep going until you've isolated
the problematic line.

catch has a single argument (I've called it err in this case), which receives the
error object; we can query properties of that object, such as name and message,
to get details about the error.

Often, I use a for-in iterator to run through the entire object and find out what
it says:

File: debugging-trycatch.js (excerpt)
for (var i in err)

{
}

alert(i + ': ' + err[i]);

24 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Writing to the Page or Window

Writing to the Page or Window

If you’re examining a great deal of data while debugging, or you're dealing with
data that’s formatted in a complicated way, it’s often better to write that data
directly to a page or popup window than to try to deal with lots of alert dialogs.
If you're examining data in a loop, in particular, you could end up generating
hundreds of dialogs, each of which you’ll have to dismiss manually—a very tedious
process.

In these kinds of situations, we can use an element’s innerHTML property to write
the data to the page. Here’s an example in which we build a list using the contents
of an array (data), then write it into a test div:

File: debugging-writing.js (excerpt)
var test = document.getElementById('testdiv');

test.innerHTML += '"';
for (var 1 = 0; i < data.length; i++)

{

test.innerHTML += '<1i>' + i + '=' + data[i] + '</1li>';

}

test.innerHTML += '"';

We can also write the data into a popup, which is useful if there’s no convenient
place to put it on the page:

File: debugging-writing.js (excerpt)
var win = window.open('', win, 'width=320,height=240");

win.document.open();
win.document.write('");
for (var i = 0; i < data.length; i++)
{
win.document.write('<1li>' + i + '=' + data[i] + '</1li>")

}

win.document.write('"');
win.document.close();

You can format the output however you like, and use it to structure data in any
way that makes it easier for you to find the error.

When you’re working with smaller amounts of data, you can gain a similar ad-
vantage by writing the data to the main title element:

Order the print version of this book to get all 588 pages! 25

http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

File: debugging-writing.js (excerpt)
document.title = '0 = ' + data[O];

This final approach is most useful when tracking data that changes continually
or rapidly, such as a value being processed by a setInterval function (an asyn-
chronous timer we’ll meet properly in Chapter 14).

Using an External Debugger

I can recommend two debuggers:
[—Venkman’ for Mozilla and Firefox
[Microsoft Script Debugger'® for Windows Internet Explorer

External debuggers are a far more detailed way to analyze your scripts, and have
much greater capabilities than their in-browser counterparts. External debuggers
can do things like stopping the execution of the script at specific points, or
watching particular properties so that you're informed of any change to them,
however it may be caused. They also include features that allow you “step through”
code line by line, in order help find errors that may occur only briefly, or are
otherwise difficult to isolate.

External debuggers are complex pieces of software, and it can take time for de-
velopers to learn how to use them properly. They can be very useful for highlight-
ing logical errors, and valuable as learning tools in their own right, but they’re
limited in their ability to help with browser incompatibilities: they’re only useful
there if the bug you’re looking for is in the browser that the debugger supports!

Strict Warnings

If you open the JavaScript console in Firefox you’ll see that it includes options
to show Errors and Warnings. Warnings notify you of code that, though it is not
erroneous per se, does rely on automatic error handling, uses deprecated syntax,
or is in some other way untrue to the ECMAScript specification.

For example, the variable fruit is defined twice in the code below:

¥ httpy//www.mozilla.org/projects/venkman/
19 http://msdn.microsoft.com/scripting/
"o see these warnings, it may be necessary to enable strict reporting by typing in the address

about:config and setting javascript.options.strict to true.

26 Order the print version of this book to get all 588 pages!

http://www.mozilla.org/projects/venkman/
http://msdn.microsoft.com/scripting/
about:config
http://www.sitepoint.com/launch/92257e

Strict Warnings

File: strict-warnings.js (excerpt)

var fruit = 'mango';
if (basket.indexOf('apple') != -1)
{
var fruit = 'apple';
}

‘We should have omitted the second var, because var is used to declare a variable
for the first time, which we’ve already done. Figure 1.4 shows how the JavaScript
console will highlight our error as a warning.

Figure 1.4. The JavaScript warnings console in Firefox

¥ 1avaScript Console i 10| =]
Al Errors | ‘Warnings Messagesl Clear

I Ewvaluate
Warning: redeclaration of war fruit
; Source File: hitbp s v sitepoint. corm/test js Line: 7
!_'_ var fruit = 'apple':
¥

There are several coding missteps that can cause warnings like this. For example:

re-declaring a variable
This produces the warning, “redeclaration of var name,” as we just saw.

failing to declare a variable in the first place

This oversight produces the warning, “assignment to undeclared variable
name.”

This might arise, for example, if the first line of our code read simply fruit
= 'mango';

Order the print version of this book to get all 588 pages! 27

http://www.sitepoint.com/launch/92257e

Chapter 1: Getting Started with JavaScript

assuming the existence of an object
This assumption produces the warning “reference to undefined property
name.”

For example, a test condition like if (document.getElementById) assumes
the existence of the getElementById method, and banks on the fact that
JavaScript’s automatic error-handling capabilities will convert a nonexistent
method to false in browsers in which this method doesn’t exist. To achieve
the same end without seeing a warning, we would be more specific, using
if(typeof document.getElementById != 'undefined').

There are also some function-related warnings, and a range of other miscellaneous
warnings that includes my personal favorite, “useless expression,” which is pro-
duced by a statement within a function that does nothing:

File: strict-warnings.js (excerpt)
function getBasket ()
{

var fruit = 'pomegranate';
fruit;

}

For a thorough rundown on the topic, I recommend Alex Vincent’s article Tackling
JavaScript strict warnings.

Warnings don’t matter in the sense that they don’t prevent our scripts from
working, but working to avoid warnings helps us to adopt better coding practice,
which ultimately creates efficiency benefits. For instance, scripts run faster in
Mozilla if there are no strict warnings, a subject we’ll look at again in Chapter 20.

Type Conversion Testing
note

Although we shouldn’t rely on type conversion to test a value that might be
undefined, it’s perfectly fine to do so for a value that might be null, because
the ECMAScript specification requires that null evaluates to false. So,
for example, having already established the existence of getElementById
using the typeof operator as shown above, it’s perfectly safe from then on
to test for individual elements as shown below, because getElementById
returns Null for nonexistent elements in the DOM:

if (document.getElementById('something'))
{

12 http:/J/javascriptkit.com/javatutors/serror.shtml

28 Order the print version of this book to get all 588 pages!

http://javascriptkit.com/javatutors/serror.shtml
http://javascriptkit.com/javatutors/serror.shtml
http://www.sitepoint.com/launch/92257e

Summary

: the element exists

Summary

In this chapter, we’ve talked about best-practice approaches to scripting that will
make our code easier to read and manage, and will allow it to degrade gracefully
in unsupported devices. We’ve also begun to introduce some of the techniques
we’ll need to build useful scripts, including the ubiquitous load event listener
that we’ll use for almost every solution in this book!

We’ve covered some pretty advanced stuff already, so don’t worry if some of it
was difficult to take in. We’ll be coming back to all the concepts and techniques
we’ve introduced here as we progress through the remaining chapters.

Order the print version of this book to get all 588 pages! 29

http://www.sitepoint.com/launch/92257e

30

Navigating the Document Object
Model

Browsers give JavaScript programs access to the elements on a web page via the
Document Object Model (DOM)—an internal representation of the headings,
paragraphs, lists, styles, IDs, classes, and all the other data to be found in the
HTML on your page.

The DOM can be thought of as a tree consisting of interconnected nodes. Each
tag in an HTML document is represented by a node; any tags that are nested
inside that tag are nodes that are connected to it as children, or branches in the
tree. Each of these nodes is called an element node.' There are several other
types of nodes; the most useful are the document node, text node, and attribute
node. The document node represents the document itself, and is the root of the
DOM tree. Text nodes represent the text contained between an element’s tags.
Attribute nodes represent the attributes specified inside an element’s opening
tag. Consider this basic HTML page structure:

<html>
<head>
<title>Stairway to the stars</title>
</head>
<body>
<h1 id="top">Stairway to the stars</hi1>

]Strictly speaking, each element node represents a pair of tags—the start and end tags of an element
(e.g., <p>and </p>)—or a single self-closing tag (e.g.,
, or
in XHTML).

Chapter 5: Navigating the Document Object Model

<p class="introduction">For centuries, the stars have been
more to humankind than just burning balls of gas ..</p>
</body>
</html>

The DOM for this page could be visualized as Figure 5.1.

Every page has a document node, but its descendents are derived from the content
of the document itself. Through the use of element nodes, text nodes, and attribute
nodes, every piece of information on a page is accessible via JavaScript.

The DOM isn’t just restrlcted to HTML and JavaScript, though. Here’s how the
W3C DOM specification site” explains the matter:

The Document Object Model is a platform- and language-neutral
interface that will allow programs and scripts to dynamically ac-
cess and update the content, structure and style of documents.

So, even though the mixture of JavaScript and HTML is the most common
combination of technologies in which the DOM is utilized, the knowledge you
gain from this chapter can be applied to a number of different programming
languages and document types.

In order to make you a “master of your DOMain,” this chapter will explain how
to find any element you’re looking for on a web page, then change it, rearrange
it, or erase it completely.

2 httpy//www.w3.org/DOM/

80 Order the print version of this book to get all 588 pages!

http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.sitepoint.com/launch/92257e

Figure 5.1. The DOM structure of a simple HTML page, visualized
as a tree hierarchy

document
html
head
title
Stairway to the stars
body
h1 — id :
Key Stairway to the stars
Element Node
T p ——— class .
1 i AttributeNode | g lmmmo------e-

Text Node

For centuries, the ...

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Chapter 5: Navigating the Document Object Model

Accessing Elements

Access provides control, control is power, and you're a power programmer, right?
So you need access to everything that’s on a web page. Fortunately, JavaScript
gives you access to any element on a page using just a few methods and properties.

Solution

Although it’s possible to navigate an HTML document like a road map—starting
from home and working your way towards your destination one node at a
time—this is usually an inefficient way of finding an element because it requires
a lot of code, and any changes in the structure of the document will usually mean
that you have to rewrite your scripts. If you want to find something quickly and
easily, the method that you should tattoo onto the back of your hand is
document.getElementById.

Assuming that you have the correct markup in place, getElementById will allow
you immediately to access any element by its unique id attribute value. For in-
stance, imagine your web page contains this code:

File: access_element.html (excerpt)
<p>
Journey to the stars
</p>

You can use the a element’s id attribute to get direct access to the element itself:

File: access_element.js (excerpt)
var elementRef = document.getElementById("sirius");

The value of the variable elementRef will now be referenced to the a element—any
operations that you perform on elementRef will affect that exact hyperlink.

getElementById is good for working with a specific element; however, sometimes
you’ll want to work with a group of elements. In order to retrieve a group of ele-
ments on the basis of their tag names, you can use the method
getElementsByTagName.

As can be seen from its name, getElementsByTagName takes a tag name and re-
turns all elements of that type. Assume that we have this HTML code:

82 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Accessing Elements

File: access_element2.html (excerpt)

Sirius
</1li>

Canopus
</1li>

Arcturus
</1li>

Vega
</1li>

We can retrieve a collection that contains each of the hyperlinks like so:

File: access_element2.js (excerpt)
var anchors = document.getElementsByTagName("a");

The value of the variable anchors will now be a collection of a elements. Collec-
tions are similar to arrays in that each of the items in a collection is referenced
using square bracket notation, and the items are indexed numerically starting at
zero. The collection returned by getElementsByTagName sorts the elements by
their source order, so we can reference each of the links thus:

anchorArray[0] the a element for “Sirius”
anchorArray[1] the a element for “Canopus”
anchorArray[2] the a element for “Arcturus”
anchorArray[3] the a element for “Vega”

Using this collection you can iterate through the elements and perform an oper-
ation on them, such as assigning a class using the element nodes’ className

property:

File: access_element2.js (excerpt)
var anchors = document.getElementsByTagName("a");

for (var i = 0; i < anchors.length; i++)

{

Order the print version of this book to get all 588 pages! 83

http://www.sitepoint.com/launch/92257e

Chapter 5: Navigating the Document Object Model

anchors[i].className = "starLink";

}

Unlike getElementById, which may be called on the document node only, the
getElementsByTagName method is available from every single element node. You
can limit the scope of the getElementsByTagName method by executing it on a
particular element. getElementsByTagName will only return elements that are
descendents of the element on which the method was called.

If we have two lists, but want to assign a new class to the links in one list only,
we can target those a elements exclusively by calling getElementsByTagName on
their parent list:

File: access_element3.html (excerpt)
<ul id="planets">

Mercury
</1li>

Venus
</1li>

Earth
</1li>

Mars
</1li>

<ul id="stars">

Sirius
</1li>

Canopus
</1li>

Arcturus
</1li>

Vega
</1li>

To target the list of stars, we need to obtain a reference to the parent ul element,
then call getElementsByTagName on it directly:

84 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Accessing Elements

File: access_element3.js (excerpt)

var starsList = document.getElementById("stars");
var starsAnchors = starsList.getElementsByTagName("a");

The value of the variable starsAnchors will be a collection of the a elements
inside the stars unordered list, instead of a collection of all a elements on the

page.
DOM 0 Collections
Tip@

Many “special” elements in an HTML document can be accessed by even
more direct means. The body element of the document can be accessed as
document.body. A collection of all the forms in a document may be found
in document.forms. All of the images in a document may be found in
document.images.

In fact, most of these collections have been around since before the DOM
was standardized by the W3C, and are commonly referred to as DOM 0
properties.

Because the initial implementations of these features were not standardized,
these collections have occasionally proven unreliable in browsers that are
moving towards standards compliance. Early versions of some Mozilla
browsers (e.g., Firefox), for example, did not support these collections on
XHTML documents.

Today’s browsers generally do a good job of supporting these collections;
however, if you do run into problems, it’s worth trying the more verbose
getElementsByTagName method of accessing the relevant elements. Instead
of document.body, for example, you could use:

var body = document.getElementsByTagName ("body")[0];

Discussion

If you really need to step through the DOM hierarchy element by element, each
node has several properties that enable you to access related nodes:

node.childNodes a collection that contains source-order references to
each of the children of the specified node, including
both elements and text nodes

node.firstChild the first child node of the specified node

Order the print version of this book to get all 588 pages!

85

http://www.sitepoint.com/launch/92257e

Chapter 5: Navigating the Document Object Model

node.lastchild the last child node of the specific node

node.parentNode a reference to the parent element of the specified
node

node .nextSibling the next node in the document that has the same

parent as the specified node

node .previousSibling the previous element that’s on the same level as the
specified node

If any of these properties do not exist for a specific node (e.g., the last node of a
parent will not have a next sibling), they will have a value of null.

Take a look at this simple page:

File: access_element4.html (excerpt)
<div id="outerGalaxy">
<ul id="starList">
<li id="start1">

Rigel
</1li>
<li id="star2">
Altair
</1li>
<li id="star3">
Betelgeuse
</1li>

</div>

The list item with ID star2 could be referenced using any of these expressions:

document.getElementById
document.getElementById
document.getElementById
document.getElementById

"star1").nextSibling;
"star3").previousSibling;
"starList").childNodes[1];
"star1").parentNode.childNodes[1];

—_— o~ o~ o~

Whitespace Nodes
hote
Some browsers will create whitespace nodes between the element nodes in
any DOM structure that was interpreted from a text string (e.g., an HTML
file). Whitespace nodes are text nodes that contain only whitespace (tabs,
spaces, new lines) to help format the code in the way it was written in the
source file.

86

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Creating Elements and Text Nodes

When you're traversing the DOM node by node using the above properties,
you should always allow for these whitespace nodes. Usually, this means
checking that the node you've retrieved is an element node, not just a
whitespace node that’s separating elements.

There are two easy ways to check whether a node is an element node or a
text node. The nodeName property of a text node will always be "#text",
whereas the nodeName of an element node will identify the element type.
However, in distinguishing text nodes from element nodes, it’s easier to
check the nodeType property. Element nodes have a nodeType of 1,
whereas text nodes have a nodeType of 3. You can use this knowledge as a
test when retrieving elements:

File: access_element4.js (excerpt)
var star2 = document.getElementById("star1").nextSibling;

while (star2.nodeType == "3")
{

star2 = star2.nextSibling;
}

Using these DOM properties, it’s possible to start your journey at the root html
element, and end up buried in the legend of some deeply-nested fieldset—it’s
all just a matter of following the nodes.

Creating Elements and Text Nodes

JavaScript doesn’t just have the ability to modify existing elements in the DOM;
it can also create new elements and place them anywhere within a page’s structure.

Solution

createElement is the aptly named method that allows you to create new elements.
It only takes one argument—the type (as a string) of the element you wish to
create—and returns a reference to the newly-created element:

File: create_elements.js (excerpt)
var newAnchor = document.createElement("a");

The variable newAnchor will be a new a element, ready to be inserted into the

page.

Order the print version of this book to get all 588 pages! 87

http://www.sitepoint.com/launch/92257e

Chapter 5: Navigating the Document Object Model

Specifying Namespaces in Documents with an XML
notel MIME Type

If you’re coding JavaScript for use in documents with a MIME type of ap-
plication/xhtml+xml (or some other XML MIME type), you should use
the method createElementNS, instead of createElement, to specify the
namespace for which you’re creating the element:

var newAnchor = document.createElementNS(
"“http://www.w3.0rg/1999/xhtml", "a");

This distinction applies to a number of DOM methods, such as
removeElement/removeElementNS and getAttribute/getAttributeNs;
however, we won’t use the namespace-enhanced versions of these methods
in this book.

Simon Willison provides a brief explanation of working with JavaScript and
different MIME types3 on his web site.

The text that goes inside an element is actually a child text node of the element,
so it must be created separately. Text nodes are different from element nodes,
so they have their own creation method, createTextNode:

File: create_elements.js (excerpt)
var anchorText = document.createTextNode("monoceros");

If you’re modifying an existing text node, you can access the text it contains via
the nodevalue property. This allows you to get and set the text inside a text
node:

var textNode = document.createTextNode("monoceros");
var oldText = textNode.nodeValue;
textNode.nodeValue = "pyxis";

The value of the variable 0ldText is now "monoceros", and the text inside
textNode is now "pyxis".

You can insert either an element node or a text node as the last child of an existing
element using its appendChild method. This method will place the new node
after all of the element’s existing children.

Consider this fragment of HTML:

% http://simon.incutio.com/archive/2003/06/1 5/javascript WithXML

88 Order the print version of this book to get all 588 pages!

http://simon.incutio.com/archive/2003/06/15/javascriptWithXML
http://simon.incutio.com/archive/2003/06/15/javascriptWithXML
http://www.sitepoint.com/launch/92257e

Creating Elements and Text Nodes

File: create_elements.html (excerpt)
<p id="starLinks">
Sirius
</p>

We can use DOM methods to create and insert another link at the end of the

paragraph:

File: create_elements.js (excerpt)
var anchorText = document.createTextNode("monoceros");

var newAnchor = document.createElement("a");
newAnchor.appendChild(anchorText) ;

var parent

= document.getElementById("starLinks");
var newChild =

parent.appendChild(newAnchor) ;

The value of the variable newChild will be a reference to the newly inserted ele-
ment.

If we were to translate the state of the DOM after this code had executed into
HTML code, it would look like this:

<p id="starLinks">
Sirius<a>monoceros
</p>

We didn’t specify any attributes for the new element, so it doesn’t link anywhere
at the moment. The process for specifying attributes is explained shortly in
“Reading and Writing the Attributes of an Element”.

Discussion

There are three basic ways by which a new element or text node can be inserted
into a web page. The approach you use will depend upon the point at which you
want the new node to be inserted: as the last child of an element, before another
node, or as the replacement for a node. The process of appending an element as
the last child was explained above. You can insert the node before an existing
node using the insertBefore method of its parent element, and you can replace
a node using the replaceChild method of its parent element.

Order the print version of this book to get all 588 pages! 89

http://www.sitepoint.com/launch/92257e

Chapter 5: Navigating the Document Object Model

In order to use insertBefore, you need to have references to the node you’re
going to insert, and to the node before which you wish to insert it. Consider this
HTML code:

File: create_elements2.html (excerpt)
<p id="starLinks">
Sirius
</p>

We can insert a new link before the existing one by calling insertBefore from
its parent element (the paragraph):

File: create_elements2.js (excerpt)
var anchorText = document.createTextNode("monoceros");

var newAnchor = document.createElement("a");
newAnchor.appendChild(anchorText) ;

var existingAnchor = document.getElementById("sirius");
var parent = existingAnchor.parentNode;
var newChild = parent.insertBefore(newAnchor, existingAnchor);

The value of the variable newChild will be a reference to the newly inserted ele-
ment.

If we were to translate into HTML the state of the DOM after this operation, it
would look like this:

<p id="starLinks">
<a>monocerosSirius
</p>

Instead, we could replace the existing link entirely using replaceChild:

File: create_elements3.js (excerpt)
var anchorText = document.createTextNode("monoceros");

var newAnchor = document.createElement("a");
newAnchor.appendChild(anchorText) ;

var existingAnchor = document.getElementById("sirius");
var parent = existingAnchor.parentNode;
var newChild = parent.replaceChild(newAnchor, existingAnchor);

The DOM would then look like this:

90 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Changing the Type of an Element

<p id="starLinks">
<a>monoceros
</p>

Changing the Type of an Element

Are your ordered lists feeling a bit unordered? Do your headings have paragraph
envy? Using a little JavaScript knowledge, it’s possible to change the type of an
element entirely, while preserving the structure of its children.

Solution

There’s no straightforward, simple way to change the type of an element. In order
to achieve this feat you’ll have to perform a bit of a juggling act.

Let’s assume that we want to change this paragraph into a div:

File: change_type_of_element. js (excerpt)
<p id="starLinks">
Sirius
Achanar
Hadar
</p>

We need to create a new div, move each of the paragraph’s children into it, then
swap the new element for the old:

File: change_type_of_element.js (excerpt)
var div = document.createElement("div");
var paragraph = document.getElementById("starLinks");

for (var i = 0; i < paragraph.childNodes.length; i++)

{

var clone = paragraph.childNodes[i].cloneNode (true);

div.appendChild(clone);
}

paragraph.parentNode.replaceChild(div, paragraph);

The only unfamiliar line here should be the point at which a clone is created for
each of the paragraph’s children. The cloneNode method produces an identical
copy of the node from which it’s called. By passing this method the argument

Order the print version of this book to get all 588 pages! 91

http://www.sitepoint.com/launch/92257e

Chapter 5: Navigating the Document Object Model

true, we indicate that we want all of that element’s children to be copied along
with the element itself. Using cloneNode, we can mirror the original element’s
children under the new div, then remove the paragraph once we’re finished

copying.

While cloning nodes is useful in some circumstances, it turns out that there’s a
cleaner way to approach this specific problem. We can simply move the child
nodes of the existing paragraph into the new div. DOM nodes can belong only
to one parent element at a time, so adding the nodes to the div also removes
them from the paragraph:

File: change_type_of_element2.js (excerpt)
var div = document.createElement("div");
var paragraph = document.getElementById("starLinks");

while (paragraphNode.childNodes.length > 0){
div.appendChild(paragraphNode.firstChild);

}

paragraph.parentNode.replaceChild(div, paragraph);

Take Care Changing the Node Structure of the DOM

hote

The elements in a collection are updated automatically whenever a change
occurs in the DOM—even if you copy that collection into a variable before
the change occurs. So, if you remove from the DOM an element that was
contained in a collection with which you had been working, the element
reference will also be removed from the collection. This will change the length
of the collection as well as the indexes of any elements that appear after the
removed element.

When performing operations that affect the node structure of the
DOM-—such as moving a node to a new parent element—you have to be
careful about iterative processes. The code above uses a while loop that
only accesses the first child of the paragraph, because each time a child is
relocated, the length of the childNodes collection will decrease by one, and
all the elements in the collection will shift along. A for loop with a counter
variable would not handle all the children correctly because it would assume
that the contents of the collection would remain the same throughout the
loop.

92 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Removing an Element or Text Node

Discussion

There’s no easy way to copy the attributes of an element to its replacement.* If
you want the new element to have the same id, class, href, and so on, you'll
have to copy the values over manually:

File: change_type_of_element.js (excerpt)
div.id = paragraph.getAttribute("id");
div.className = paragraph.className;

Removing an Element or Text Node

Once an element has outlived its usefulness, it’s time to give it the chop. You
can use JavaScript to remove any element cleanly from the DOM.

Solution

The removeChild method removes any child node from its parent, and returns
a reference to the removed object.

Let’s start off with this HTML:

File: remove_element.html (excerpt)
<p>
Sirius
</p>

We could use removeChild to remove the hyperlink from its parent paragraph
like so:

File: remove_element.js (excerpt)
var anchor document.getElementById("sirius");
var parent = anchor.parentNode;
var removedChild = parent.removeChild(anchor);

The variable removedChild will be a reference to the a element, but that element
will not be located anywhere in the DOM: it will simply be available in memory,
much as if we had just created it using createElement. This allows us to relocate
it to another position on the page, it we wish, or we can simply let the variable

4Ifyou look at the DOM specification, it looks like there is. Unfortunately, Internet Explorer’s support
for the relevant properties and methods is just not up to the task.

Order the print version of this book to get all 588 pages! 93

http://www.sitepoint.com/launch/92257e

Chapter 5: Navigating the Document Object Model

disappear at the end of the script, and the reference will be lost altogether—ef-
fectively deleting it. Following the above code, the DOM will end up like this:

<p>
</p>

Of course, you don’t need to assign the return value from removeChild to a
variable. You can just execute it and forget about the element altogether:

var anchor = document.getElementById("sirius");
var parent = anchor.parentNode;
parent.removeChild(anchor);

Discussion

If the element that you're deleting has children that you wish to preserve (i.e.,
you just want to “unwrap” them by removing their parent), you must rescue
those children to make sure they stay in the document when their parent is re-
moved. You can achieve this using the already-mentioned insertBefore method,
which, when used on elements that are already contained in the DOM, first re-
moves them, then inserts them at the appropriate point.

The paragraph in the following HTML contains multiple children:

File: remove_element2.html (excerpt)
<div id="starContainer">
<p id="starLinks">
Aldebaran
Castor
Pollux
</p>
</div>

We can loop through the paragraph’s childNodes collection, and relocate each
of its children individually before removing the element itself:

File: remove_element2.js (excerpt)

var parent = document.getElementById("starLinks");
var container = document.getElementById("starContainer");

while (parent.childNodes.length > 0)
{

container.insertBefore(parent.childNodes[0], parent);

}

94 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Reading and Writing the Attributes of an Element

container.removeChild(parent) ;
The page’s DOM will now look like this:

<div id="starContainer">
Aldebaran
Castor
Pollux
</div>

Reading and Writing the Attributes of an
Element

The most frequently used parts of an HTML element are its attributes—its id,
class, href, title, or any of a hundred other pieces of information that can be
included in an HTML tag. JavaScript is able not only to read these values, but
write them as well.

Solution

Two methods exist for reading and writing an element’s attributes. getAttribute
allows you to read the value of an attribute, while setAttribute allows you to
write it.

Consider this HTML:

File: read_write_attributes.html (excerpt)

Antares

We would be able to read the attributes of the element like so:

File: read_write_attributes.js (excerpt)

var anchor = document.getElementById("antares");
var anchorId = anchor.getAttribute("id");
var anchorTitle = anchor.getAttribute("title");

The value of the variable anchorId will be "antares", and the value of the variable
anchorTitle will be "A far away place".

Order the print version of this book to get all 588 pages! 95

http://www.sitepoint.com/launch/92257e

Chapter 5: Navigating the Document Object Model

To change the attributes of the hyperlink, we use setAttribute, passing it the
name of the attribute to be changed, and the value we want to change it to:

File: read_write_attributes2.js (excerpt)
var anchor = document.getElementById("antares");

anchor.setAttribute("title", "Not that far away");
var newTitle = anchor.getAttribute("title");

The value of the variable newTitle will now be "Not that far away".

Discussion

In its journey from the free-roaming Netscape wilderness to the more tightly
defined, standards-based terrain of the modern age, the DOM standard has picked
up a fair amount of extra syntax for dealing with HTML. One of the most pervas-
ive of these extras is the mapping between DOM properties and HTML attributes.

When a document is parsed into its DOM form, special attribute nodes are created
for an element’s attributes. These nodes are not accessible as “children” of that
element: they are accessible only via the two methods mentioned above. However,
as a throwback to the original DOM implementations (called DOM 0, where the
zero suggests these features came prior to standards), current DOM specs contain
additional functionality that’s specific to HTML. In particular, attributes are
accessible directly as properties of an element. So, the href attribute of a hyperlink
is accessible through 1ink.getAttribute("href") as well as through 1ink.href.

This shortcut syntax is not only cleaner and more readable: in some situations
it is also mecessary. Internet Explorer 6 and versions below will not propagate
changes made via setAttribute to the visual display of an element. So any
changes that are made to the class, id, or style of an element using
setAttribute will not affect the way it’s displayed. In order for those changes
to take effect, they must be made via the element node’s attribute-specific prop-
erties.

To further confuse matters, the values that are returned when an attribute-specific
property is read vary between browsers, the most notable variations occurring in
Konqueror. If an attribute doesn’t exist, Konqueror will return null as the value
of an attribute-specific property, while all other browsers will return an empty
string. In a more specific case, some browsers will return Iink.getAttrib-
ute("href") as an absolute URL (e.g., "http://www.example.com/ant-

96 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Reading and Writing the Attributes of an Element

ares.html"), while others return the actual attribute value (e.g., "antares.html").
In this case, it’s safer to use the dot property, as it consistently returns the absolute
URL across browsers.

So, what’s the general solution to these problems?

The basic rule is this: if you are certain that an attribute has been assigned a
value, it’s safe to use the dot property method to access it. If you're unsure
whether or not an attribute has been set, you should first use one of the DOM
methods to ensure that it has a value, then use the dot property to obtain its
value.

For reading an unverified attribute, use the following:
var anchor = document.getElementById("sirius");

if (anchor.getAttribute("title") &&
anchor.title == "Not the satellite radio")

{ .
.

This makes sure that the attribute exists, and is not null, before fetching its
value.

For writing to an unverified attribute, use the following code:
var anchor = document.getElementById("sirius");

anchor.setAttribute("title", "");
anchor.title = "Yes, the satellite radio";

This code makes sure that the attribute is created correctly first, and is then set
in such a way that Internet Explorer will not have problems if the attribute affects
the visual display of the element.

This rule has a few exceptions for attributes whose existence you can guarantee.
The most notable of these “must-have” attributes are style and class, which
will always be valid for any given element; thus, you can immediately reference
them as dot properties (element.style and element.className respectively).

class is one of two attributes that get a little tricky, because class is a reserved
word in JavaScript. As a property, it is written element.className, but using

Order the print version of this book to get all 588 pages! 97

http://www.sitepoint.com/launch/92257e

Chapter 5: Navigating the Document Object Model

getAttribute/setAttribute, we write element.getAttribute("class"), except
in Internet Explorer, where we still use element.getAttribute("className").

The other attribute that we have to watch out for is the for attribute of a 1abel.
It follows the same rules as class, but its property form is htmlFor. Using
getAttribute/setAttribute, we write element.getAttribute("for"), but in
Internet Explorer it’s element.getAttribute("htmlFor").

Getting all Elements with a Particular
Attribute Value

The ability to find all the elements that have a particular attribute can be pretty
handy when you need to modify all elements that have the same class or title,
for example.

Solution

In order to find elements with a particular attribute value, we need to check every
element on the page for that attribute. This is a very calculation-intensive opera-
tion, so it shouldn’t be undertaken lightly. If you wanted to find all input ele-
ments with type="checkbox", you're better off limiting your search to input
elements first:

var inputs = document.getElementsByTagName ("input");

for (var i = 0; i < inputs.length; i++)
{
if (inputs.getAttribute("type") == "checkbox")
{ .
}
}
This will require less calculation than iterating through every element on the page
and checking its type. However, the function presented in this solu-

tion—getElementsByAttribute—is ideal when you need to find a number of
elements of different types that have the same attribute value.

The easiest way to check every element on a page is to loop through the collection
returned by getElementsByTagName("*"). The only problem with this method
is that Internet Explorer 5.0 and 5.5 do not support the asterisk wildcard for tag

98 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Getting all Elements with a Particular Attribute Value

selection. Luckily, these browsers support the document.all property, which is
an array containing all the elements on the page. getElementsByAttribute
handles this issue with a simple code branch, then proceeds to check the elements
for a given attribute value, adding matches to an array to be returned:

File: get_elements_by_attribute.js (excerpt)

function getElementsByAttribute(attribute, attributeValue)
{

var elementArray = new Array();

var matchedArray = new Array();
if (document.all)
{

elementArray = document.all;
}
else
{

elementArray = document.getElementsByTagName("*");

}

for (var i = 0; i < elementArray.length; i++)
{ if (attribute == "class")
{ var pattern = new RegExp("(~|)" +
attributevalue + "([$)");
if (pattern.test(elementArray[i].className))

{

}
}
else if (attribute == "for")
{
if (elementArray[i].getAttribute("htmlFor") ||
elementArray[i].getAttribute("for"))

matchedArray[matchedArray.length] = elementArray[i];

{
if (elementArray[i].htmlFor == attributeValue)
{
matchedArray[matchedArray.length] = elementArray[i];
}
}
}
else if (elementArray[i].getAttribute(attribute) ==
attributeValue)
{

Order the print version of this book to get all 588 pages! 99

http://www.sitepoint.com/launch/92257e

Chapter 5: Navigating the Document Object Model

matchedArray[matchedArray.length] = elementArray[i];
}
}

return matchedArray;

}

Alot of the code in getElementsByAttribute deals with the browser differences
in attribute handling that were mentioned earlier in this chapter, in “Reading
and Writing the Attributes of an Element”. The necessary techniques are used
if the required attribute is class or for. As an added bonus when checking for
a match on the class attribute, if an element has been assigned multiple classes,
the function automatically checks each of these to see whether it matches the
required value.

Adding and Removing Multiple Classes
to/from an Element

Combining multiple classes is a very useful CSS technique. It provides a very
primitive means of inheritance by allowing a number of different styles to be
combined on the one element, allowing you to mix and match different effects
throughout a site. They’re particularly useful in situations like highlighting ele-
ments: a class can be added that highlights an element without disturbing any
of the other visual properties that may have been applied to the element by other
classes. However, if you are assigning classes in JavaScript you have to be careful
that you don’t inadvertently overwrite previously assigned classes.

Solution

The class for any element is accessible via its className property. This property
allows you both to read and write the classes that are currently applied to that
element. Because it’s just one string, the most difficult part of working with
className is that you need to deal with the syntax it uses to represent multiple
classes.

The class names in an element’s className property are separated by spaces.
The first class name is not preceded by anything, and the last class name is not
followed by anything. This makes it easy to add a class to the class list naively:
just concatenate a space and the new class name to the end of className. How-
ever, you’ll want to avoid adding a class name that already exists in the list, as

100 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Adding and Removing Multiple Classes to/from an Element

this will make removing the class harder. You’ll also want to avoid using a space
at the beginning of the className value, because this will cause errors in Opera
7:

File: add_remove_classes.js (excerpt)
function addClass(target, classValue)

{

var pattern = new RegExp("("|)" + classValue + "(|$)");

if (!pattern.test(target.className))

{
if (target.className == "")
{
target.className = classValue;
}
else
{
target.className += " " + classValue;
}
}

return true;

}

First, addClass creates a regular expression pattern containing the class to be
added. It then uses this pattern to test the current className value. If the class
name doesn’t already exist, we check for an empty className value (in which
case the class name is assigned to the property verbatim), or we append to the
existing value a space and the new class name.

Separating Classes
note

Some regular expression examples for finding classes use the word boundary
special character (\b) to separate classes. However, this will not work with
all valid class names, such as those containing hyphens.

The process for removing a class uses a regular expression pattern that’s identical
to the one we use to add a class, but we don’t need to perform as many checks:

File: add_remove_classes.js (excerpt)
function removeClass(target, classValue)

{

var removedClass = target.className;
var pattern = new RegExp("("~|)" + classValue + "([$)");

Order the print version of this book to get all 588 pages! 101

http://www.sitepoint.com/launch/92257e

Chapter 5: Navigating the Document Object Model

removedClass removedClass.replace(pattern, "$1");
removedClass = removedClass.replace(/ $/, "");

target.className = removedClass;

return true;

}

After removeClass has executed the replacement regular expression on a copy
of the className property’s value, it cleans up the resulting value by removing
any trailing space (which is created when we remove the last class in a multiple
class className), then assigns it back to the target’s className.

Summary

This chapter introduced the basic but powerful tools that you’ll need in order to
manipulate the Document Object Model. It’s important that you understand the
DOM-—the skeleton beneath everything you see in a browser—as you manipulate
any web page. Knowing how to create, edit, and delete parts of the DOM is crucial
to understanding the remainder of this book. Once you’ve mastered these tech-
niques, you'll be well on your way to becoming a proficient JavaScript programmer.

102 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Working with Windows and
Frames

This chapter is about simple window and frame mampulatlon including tasks
like opening popups, communicating between frames," and finding out the page’s
scrolling position.

Plenty of people feel that window manipulation is akin to the Dark Side. They
believe that a window is part of the user’s GUI, not the document, and since
JavaScript is a document scripting language, it has no business manipulating
windows.

I'm generally inclined to agree, yet I know that opinion is sometimes a luxury.
If your clients ask for something specific, you can’t necessarily change their minds,
or have the freedom to turn down work on the basis of such a principle. In this
chapter, we’ll cover a range of practical window and frame manipulation tasks
while remaining sensitive to the usability and accessibility issues that can arise
from their use.

Note, though, that there are limits, and some varieties of window scripting are
particularly unfriendly. We won’t be dealing with aggressive tactics like closing
or modifying the user’s primary window, moving windows around the screen, or
opening full-screen or “chromeless” windows. These are exactly the kinds of abuses
that have given JavaScript a bad name.

"The techniques involved in reading data from an iframe will be covered in Chapter 18.

Chapter 7: Working with Windows and Frames

Through most of this chapter we’ll be looking closely at the properties and
methods of the window object. These are implemented by different browsers in
a variety of ways, most of which have been in use since the days before JavaScript
was standardized.

We’ll have quite a few code branches to deal with, but we’ll avoid the dreaded
browser sniffing by careful use of object detection, the process of detecting an
object or feature to test for compatibility, rather than detecting specific browsers.

Using Popup Windows

Should you use popup windows? The most considered answer I have is this: not
if you can help it. Popup windows have gained a bad reputation from marketers’
aggressive use of them, but even requested popups can be barriers to good usability.

I won’t say that popups are never appropriate, but I will say that they’re seldom
so. Nevertheless, there are situations where popping open a new window is argu-
ably the most appropriate solution: an online survey might be one example, as
the format may make the content more approachable; DHTML games are another,
as the viewport may need to be of a known size.

I'll qualify my opinion by discussing the problems that popups create, then
providing a pragmatic method for using them that mitigates these problems as
much as possible.

What’s Wrong with Popups?

The main problem with most popup window scripts is that they don’t consider
the needs of the user—they address only the needs of the designer. The results?
We’ve all seen them:

[popups that are generated from links, though those links do nothing when
scripting is not available

[—popup windows that don’t have a status bar, so you can’t necessarily tell
whether the document has loaded or stalled, is still loading, etc.

[—popups that don’t give users the ability to resize the window, and popups that
fail to generate scrollbars for content that might scale outside the window

[windows that are “chromeless,” or open to the full size of the user’s screen

128 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

How Do I Minimize the Problems?

These issues are not just questions of usability, but of accessibility as well. For
example, screen-reader users may not be notified by their devices that a new
window has opened. This could obviously cause confusion if they then attempted
to go back in the browser history (they can’t). The same thing might happen for
a sighted user if a window opens at full-size: you and I may be familiar with using
the taskbar to monitor open windows, but not all computer users are—they may
not even realize that a new window has popped up.

If you’re going to use popups, looking out for issues like these, and being generally
sensitive to their impacts, will make your popups friendlier to users, and less of
a strain on your conscience.

Also, bear in mind that, from a developer’s perspective, popup windows are not
guaranteed to work: most browsers now include options to suppress popup win-
dows, and in some cases, suppression occurs even if the popup is generated in
response to a user event.

You may be able to allow for this as you would for situations in which scripting
was not supported: by ensuring that the underlying trigger for the popup still
does something useful if the popup fails. Or you might have your code open a
window and then check its own closed property, to see if it’s actually displayed
(we’ll look at this technique in the next solution).

But neither of these approaches is guaranteed to work with every browser and
popup blocker out there, so for this as much as the usability reasons, it’s simpler
and better to avoid using popups whenever you can.

How Do | Minimize the Problems?

What we need to do is establish some golden rules for the ethical use of popups:
[Make sure any triggering link degrades properly when scripting is not available.
[Always include the status bar.

[—Always include a mechanism to overflow the content: either allow window
resizing, or allow scrollbars to appear, or both.

[—Don’t open windows that are larger than 640x480 pixels.

Order the print version of this book to get all 588 pages! 129

http://www.sitepoint.com/launch/92257e

Chapter 7: Working with Windows and Frames

By limiting the size of popups, you ensure that they’re smaller than users’
primary windows on the vast majority of monitors. This increases the likeli-
hood that the user will realize that the popup is a new window.

Solution

Here’s a generic popup function that’s based on the guidelines above:

File: make-popup.js (excerpt)
function makePopup(url, width, height, overflow)

{
if (width > 640) { width = 640; }
if (height > 480) { height = 480; }

if (overflow == '' || !/~(scroll|resize|both)$/.test(overflow))

overflow = 'both';

}

var win = window.open(url, '*‘,
'width=' + width + ',height=' + height
+ ',scrollbars=' + (/~(scroll|both)$/.test(overflow) ?

‘yes' : 'no')
+ ',resizable=' + (/~(resize|both)$/.test(overflow) ?
‘yes' : 'no')

+ ',status=yes,toolbar=no,menubar=no,location=no'

);

return win;

}

As well as limiting the window size, this script refuses to create a popup that
doesn’t have an overflow, so if you don’t specify "scroll", "resize", or "both"
for the overflow argument, the default setting of "both" will be used.

The Ternary Operator
Tip@

This script uses a shortcut expression called a ternary operator to evaluate
each of the overflow options. The ternary operator uses ? and : characters
to divide the two possible outcomes of an evaluation, and is equivalent to a
single pair of if..else conditions. Consider this code:

if (outlook == 'optimistic') { glass = 'half-full'; }
else { glass = 'half-empty'; }

130 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

How Do I Minimize the Problems?

That code is equivalent to the markup below:

glass = (outlook == 'optimistic' ? 'half-full'
"half-empty');

The parentheses are not required, but you may find they make the expression
easier to read.

For more about this and other useful shortcuts, see Chapter 20.

Once you have the popup function in place, you can call it in a variety of ways.
For example, you could use a regular link:

File: make-popup.html (excerpt)
Online survey

If scripting is not available, this will work just like any other link, but if scripting
is available, the script can trigger a click event handler that passes its href to
the makePopup function, along with the other settings. The return value of the
handler depends on whether or not the window is actually opened; browsers that
block the popup will follow the link as normal:

File: make-popup.js (excerpt)
document.getElementById('survey link').onclick = function()

{
var survey = makePopup(this.href, 640, 480, 'scroll');

return survey.closed;

}s

In general, if you have a script that requires that a window be generated, you can
call the makePopup function directly with a URL:

var cpanel = makePopup('cpanel.html', 480, 240, 'resize');

If you need to close that window later in your script, you can do so by using the
close method on the stored window reference:

cpanel.close();

Discussion

The window.open method can take a number of arguments—in addition to the
URL and window name—which specify whether the window should have partic-
ular decorations, such as the menu bar, tool bar, or address (location) bar. These

Order the print version of this book to get all 588 pages! 131

http://www.sitepoint.com/launch/92257e

Chapter 7: Working with Windows and Frames

arguments are passed as a comma-delimited string to the third argument of
window.open:

var win = window.open('page.html', 'winName’,
'width=640,height=480, '
+ 'scrollbars=yes,resizable=yes,status=yes,'
+ 'toolbar=no,menubar=no,location=no');

In our makePopup function, the menubar, toolbar, and location arguments are
all preset to no because these elements are rarely useful for popup win-
dows—they’re navigational tools, after all. Popups are mostly used for one-page
interfaces, or those in which history navigation is discouraged, such as our survey
example, or the logon procedure for a bank’s web site.

You can change those arguments if you need to, but the status argument should
always be set to yes, because turning it off undermines good usability. (I
know—I"ve mentioned it already, but I'm saying it again because it’s important!)

The resizable argument may not have any effect—in some browsers, either by
design or as a result of user preferences, it’s not possible to create non-resizable
windows, even if you set this value to no. In fact, in Opera 8 for Mac OS X, it’s
not possible to create custom-sized windows at all—a created window will appear
as a new tab in the current window. That specific exception might not be signi-
ficant in itself, but it serves to illustrate the general point that control over the
properties of a created window is not absolutely guaranteed.

Once a new window is open, you can bring it into focus using the object’s focus
method. This isn’t usually necessary—generally, it happens by default—but the
technique may be useful when you’re scripting with multiple windows:

var cpanel = makePopup('cpanel.html', 480, 240, 'resize');
cpanel.focus();

Alternatively, you may want to open a popup but keep the focus in the primary
window (thereby creating a so-called “popunder”). You can take the focus away
from a window using its blur method:

var cpanel = makePopup('cpanel.html', 480, 240, 'resize');
cpanel.blur();

However, in that case you can’t predict where the focus will go to next, so it’s
more reliable to refocus the primary window:

132 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Opening Off-site Links in a New Window

var cpanel = makePopup('cpanel.html', 480, 240, 'resize');
self.focus();

Opening Off-site Links in a New Window

In the strict versions of HTML 4 and XHTML 1, the target attribute for links
no longer exists. One interpretation of this is that web pages simply shouldn’t
open links in new windows; another is that targeting doesn t have universal se-
mantics and therefore shouldn’t be defined in HTML.?

There are other interpretations, and the arguments are long (and sometimes te-
dious), but suffice it to say that you may find yourself needing a solution to this
problem. Whatever your personal views may be, it’s a common request of web
development clients.

Solution

This script identifies links by the rel attribute value external. The r‘el attribute
is a way of describing the relationship between a link and its target so its use
for identifying links that point to another site is semantically non-dubious:

File: offsite-links.html (excerpt)

Google
(offsite)

If each external link is identified like that, a single document.onclick event
handler can process clicks on all such links:

File: offsite-links.js
document.onclick = function(e)

{

var target = e ? e.target : window.event.srcElement;

while (target && !/~ (a|body)$/i.test(target.nodeName))

{
target = target.parentNode;

2The CSS 3 working draft includes a set of target properties for link presentation
[http://www.w3.0org/TR/2004/WD-css3-hyperlinks-20040224/], which could eventually see this
mechanism handed to CSS instead. Personally, I hope this never gets past the draft stage, because
it’s nothing to do with CSS: interface control is no more appropriate in a design language than it is
m a semantic markup language!

3 http://www.w3.0rg/TR/REC-html40/struct/links. html#h-12.1.2

Order the print version of this book to get all 588 pages! 133

http://www.w3.org/TR/REC-html40/struct/links.html#h-12.1.2
http://www.w3.org/TR/2004/WD-css3-hyperlinks-20040224/
http://www.sitepoint.com/launch/92257e

Chapter 7: Working with Windows and Frames

}

if (target && target.getAttribute('rel')
&& target.rel == 'external')

{

var external = window.open(target.href);

return external.closed;

}
}

Discussion

Using a single, document-wide event handler is the most efficient approach—it’s
much better than iterating through all the links and binding a handler to each
one individually. We can find out which element was actually clicked by referen-
cing the event target property. For more about events and event properties, see
Chapter 13, but here’s a brief summary of the situation.

Two completely different event models are employed by current browsers. The
script establishes which one should be used by looking for e—the event argument
that’s used by Mozilla browsers, and has been adopted by most other browsers—as
opposed to the window. event object used by Internet Explorer. It then saves the
object property that’s appropriate to the model in use: either target for Mozilla
and like browsers, or srcElement for IE.

The target object (if it’s not null) can be one of three things: a link element
node, an element or text node inside a link, or some other node. We want the
first two cases to be handled by our script, but clicks arising from the last situation
may be safely ignored. What we do is follow the trail of parent nodes from the
event target until we either find a link, or get to the body element.

Once we have a unified target link, we need simply to check for a rel attribute
with the correct value; if it exists, we can open a window with the link’s href,
and if all of that is successful (as judged by the new window object’s closed
property), the handler will return false, preventing the original link from being
followed.

Passing a link to window.open without defining arguments will create a window
with default decorations—as will a link with target="_blank".

134 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Communicating Between Frames

The First Test

hote
We use getAttribute as the first test for rel because attribute-specific
properties are only reliable if you know for certain that the attribute in
question has been assigned a value. We can’t go straight to testing
target.rel against a string, because it might be null or undefined. This
was discussed in more detail in “Reading and Writing the Attributes of an
Element” in Chapter 5.

Communicating Between Frames

If you're working in a framed environment, it may be necessary to have scripts
communicate between frames, either reading or writing properties, or calling
functions in different documents.

If you have a choice about whether or not to use frames, I'd strongly advise against
doing so, because they have many serious usability and accessibility problems,
quite apart from the fact that they’re Concej)tually broken (they create within
the browser states that cannot be addressed™). But as with your use of popups,
in some cases you may not have a choice about your use of frames. So if you
really must use them, here’s what you’ll need to do.

Solution

Let’s begin with a simple frameset document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
“http://www.w3.0org/TR/html4/frameset.dtd">
<html>
<head>
<title>A frameset document</title>
</head>
<frameset cols="200, *">
<frame src="navigation.html" name="navigationFrame">
<frame src="content.html" name="contentFrame">
<noframes>
<p>This frameset document contains:</p>

Site navigation
Main content</1li>

4 http://www.456bereastreet.com/archive/200411/who_framed_the_web_frames_and_usability/

Order the print version of this book to get all 588 pages! 135

http://www.456bereastreet.com/archive/200411/who_framed_the_web_frames_and_usability/
http://www.456bereastreet.com/archive/200411/who_framed_the_web_frames_and_usability/
http://www.sitepoint.com/launch/92257e

Chapter 7: Working with Windows and Frames

</noframes>
</frameset>
</html>

We can use four references for cross-frame scripting:
[Wwindow or self refers to the current framed page.

[—@arent refers to the page that contains the frame that contains the current
page.

[Hop refers to the page at the very top of the hierarchy of frames, which will
be the same as parent if there’s only one frameset in the hierarchy.

[—The frames collection is an associative array of all the frames in the current

page.

Let’s say we have a script in contentFrame that wants to communicate the page
in navigationFrame. Both pages are contained in a single frameset—the only
one in the hierarchy—so we could successfully make any of the following refer-
ences from within contentFrame:

[garent.frames[0]

[fop.frames[0]

[fgarent.frames['navigationFrame']
[fop.frames['navigationFrame']

The frames collection is an associative array (like the forms collection we saw
in Chapter 6), so each element can be accessed by either index or name. It’s
generally best to use the name (unless you have a good reason not to) so that
you won’t have to edit your code later if the frame order changes. By the same
token, parent references in a complex nested frameset can change if the hierarchy
changes, so I generally recommend that developers always start referencing from
top. Of the above options, the reference I prefer, then, is top.frames['naviga-
tionFrame'].

Now that we have a reference to the frame, we can call a function in the other
framed page:

136 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Getting the Scrolling Position

File: frames-navigation.js (excerpt)

var navframe = top.frames['navigationFrame'];
navframe.callMyFunction();

Alternatively, we can get a reference to the other framed document, and work
with the DOM from there:

File: frames-navigation.js (excerpt)

var navdoc = navframe.document;
var menu = navdoc.getElementById('menulist');

Discussion

Communication between frames is only allowed for documents in the same do-
main—for security reasons, it’s not possible to work with a document that was
loaded from a different domain than the script. It wouldn’t do, for example, for
a malicious site owner to load a site that you visit regularly into a frame, and
steal the personal data you enter there.

In fact, some browsers let users disallow all scripts from communicating between
frames, just to eradicate any possibility of a cross-site scripting vulnerability, and
there’s no way to work around this preference if your script finds itself running
in a browser so configured.

If you do have users who are complaining of problems (and they can’t or won’t
change their settings to allow cross-frame scripting), the safest thing to do is
simply to avoid cross-frame scripting altogether.

Alternative methods of passing data between pages are discussed in Chapter 6
and Chapter 8.

Getting the Scrolling Position

Page scrolling is one of the least-standardized properties in JavaScript: three vari-
ations are now in use by different versions of different browsers. But with a few
careful object tests, we can reliably get a consistent value.

Solution

There are three ways of getting this information. We’ll use object tests on each
approach, to determine the level of support available:

Order the print version of this book to get all 588 pages! 137

http://www.sitepoint.com/launch/92257e

Chapter 7: Working with Windows and Frames

File: get-scrolling-position.js (excerpt)
function getScrollingPosition()

{

var position = [0, 0];

if (typeof window.pageYOffset != 'undefined')
{
position = [
window.pageXOffset,
window.pageYOffset
I;
}

else if (typeof document.documentElement.scrollTop
I= 'undefined' && document.documentElement.scrollTop > 0)
{

position = [
document.documentElement.scrolllLeft,
document.documentElement.scrollTop
15
}

else if (typeof document.body.scrollTop != 'undefined')
{
position = [
document.body.scrolllLeft,
document.body.scrollTop
I;
}

return position;

}

The function can now be called as required. Here’s a simple demonstration, using
a window.onscroll event handler, that gets the figures and writes them to the
title bar:

File: get-scrolling-position.js (excerpt)
window.onscroll = function()
{
var scrollpos = getScrollingPosition();
document.title = 'left=' + scrollpos[O] + ' top=' +
scrollpos([1];

}s

138 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Getting the Scrolling Position

The Problem with scroll

hote
scroll is not the most reliable of events: it may not fire at all in Konqueror
or Safari 1.0, or when the user navigates with a mouse wheel in Firefox. And
if it does fire, it may do so continually and rapidly (as it does in Internet
Explorer), which can be slow and inefficient if the scripting you set to respond
to the event is very complex.

If you have difficulties of this kind, you may find it better to use the
setInterval function instead of an onscroll event handler.
setInterval will allow you to call the function at a predictable interval,
rather than in response to an event. You can find out more about this kind
of scripting in Chapter 14, but here’s a comparable example:

window.setInterval(function()

{

var scrollpos = getScrollingPosition();
document.title = 'left=' + scrollpos[0] + ' top=' +
scrollpos[1];
}, 250);

Discussion

The only real complication here is that IE 5 actually does recognize the
documentElement.scrollTop property, but its value is always zero, so we have
to check the value as well as looking for the existence of the property.

Otherwise, it doesn’t really matter to us which browser is using which property;
all that matters is that our script gets through one of the compatibility tests and
returns a useful value. However, the properties used by each browser are shown
here for reference:

[Window.pageYOffset is used by Firefox and other Mozilla browsers, Safari,
Konqueror, and Opera.

[document.documentElement.scrollTop is used by IE 6 in standards-compliant
mode.

[document.body.scrollTop is used by IE 5, and IE 6 in “Quirks” mode.

This list doesn’t tell the complete story, but it’s intended primarily to describe
the ordering of the tests. More recent Mozilla browsers (such as Firefox) also
support documentElement.scrollTop and body.scrollTop, by the same render-

Order the print version of this book to get all 588 pages! 139

http://www.sitepoint.com/launch/92257e

Chapter 7: Working with Windows and Frames

ing mode rules as IE 6. Safari and Konqueror support body.scrollTop in either
mode. Opera supports all three properties in any mode!

But none of this is important for you to know—browser vendors add these mul-
tiple properties to allow for scripts that are unaware of one property or another,
not to provide arbitrary choices for the sake of it. From our perspective, the im-
portant point is to settle on a set of compatibility tests that ensures our script
will work as widely as possible.

Rendering Modes

hote
“Standards” mode and “Quirks” mode are the two main rendering modes
in use by current browsers. These modes affect various aspects of the output
document, including which element is the canvas (<body> or <html>), and
how CSS box sizes are calculated. For more on rendering modes, see
Chapter 11.

Making the Page Scroll to a Particular
Position

All current browsers implement the same (nonstandard) methods for scrolling a
page. At least something here is simple!

Solution

There are two methods that can be used to scroll the page (or rather, the window
or frame), either by a particular amount (window.scrollBy), or to a particular
point (window.scrollTo):

File: scroll-page.js (excerpt)
//scroll down 200 pixels
window.scrollBy (0, 200);

File: scroll-page.js (excerpt)
//scroll across 200 pixels
window.scrollBy (200, O);

File: scroll-page.js (excerpt)
//scroll to 300 from the edge and 100 from the top
window.scrollTo (300, 100);

140 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Getting the Viewport Size (the Available Space inside the Window)

File: scroll-page.js (excerpt)
//scroll to the beginning
window.scrollTo(0, 0);

These examples say: scroll down by 200 pixels, then across by 200 pixels, then
to a point that’s 300 pixels from the left and 100 pixels from the top, then back
to the top corner.

Getting the Viewport Size (the Available
Space inside the Window)

The details of the viewport size are needed for many kinds of scripting, wherever
available space is a factor in the script’s logic. This solution provides a utility
function for getting the viewport size We’ll be seeing the function again quite a
few times throughout this book!

Solution

The properties we need are implemented in three different ways, like the properties
we saw for page scrolling in the previous section (“Making the Page Scroll to a
Particular Position”). As was the case in that example, we can use object testing
to determine which implementation is relevant, including the test for a zero-value
that we need in IE 5 (this test is required for the same reason: because, though
the property exists, it isn’t what we want):

File: get-viewport-size.js (excerpt)
function getViewportSize()

{

var size = [0, O];

if (typeof window.innerWidth != ‘'undefined')
{
size = [
window.innerWidth,
window.innerHeight

15

}
else if (typeof document.documentElement != 'undefined'’
&& typeof document.documentElement.clientWidth !=
'undefined' && document.documentElement.clientWidth != 0)
{

Order the print version of this book to get all 588 pages! 141

http://www.sitepoint.com/launch/92257e

Chapter 7: Working with Windows and Frames

size = [
document.documentElement.clientWidth,
document.documentElement.clientHeight
15

}
else
{
size = |
document.getElementsByTagName('body')[0].clientWidth,
document.getElementsByTagName('body')[0].clientHeight
I;
}

return size;

}

The function returns an array of the width and height, so we can call it whenever
we need that data:

File: get-viewport-size.js (excerpt)
window.onresize = function()

{

var size = getViewportSize();
alert('Viewport size: [' + size[O] + ', ' + size[1] + ']');

b

Summary

We’ve covered the basics of window and frame manipulation from a pragmatist’s
point of view in this chapter. We’ve also talked about principles and techniques
that we can use to ensure that scripts like this are as user-friendly and as accessible
as we can make them. Doubtless, this kind of work will remain controversial,
and clearly we do need some kind of targeting mechanism, because even though
the use of frames is slowly dying out, the advent of ever more sophisticated inter-
faces keeps these issues alive.

I rather like the XLink standard’s show attribute, which has values like new and
replace.’ These suggest a target process (open a new window, and replace the
contents of the current window, respectively) but they don’t actually define spe-
cific behaviors. They leave it up to the user agent to control what actually happens,
so, for example, new could be used to open tabs instead of windows.

3 http://www.w3.org/TR/xlink/#show-att

142 Order the print version of this book to get all 588 pages!

http://www.w3.org/TR/xlink/#show-att
http://www.w3.org/TR/xlink/#show-att
http://www.sitepoint.com/launch/92257e

Basic Dynamic HTML

Dynamic HTML isn’t a single piece of technology that you can point to and say;,
“This is DHTML.” The term is a descriptor that encompasses all of the techno-
logies that combine to make a web page dynamic: the technologies that let you
create new elements without refreshing the page, change the color of those ele-
ments, and make them expand, contract, and zoom around the screen.

DHTML uses HTML, the DOM, and CSS in combination with a client-side
scripting language—JavaScript—to bring life to what was traditionally a static
medium. In previous chapters, we learned that we can use JavaScript to manipulate
parts of a page to achieve some very handy results. DHTML provides solutions
to much more complex problems by assembling these parts into a coherent
whole—one that satisfies real-world needs, rather than programming puzzles.

This chapter explores a few of the tools we need in order to create effective user
interfaces with DHTML. It then discusses a couple of simple widgets in prepara-
tion for the more complex modules we’ll consider throughout the rest of this
book.

Handling Events

Any interaction that users have with a web page—whether they’re moving the
mouse or tapping the keyboard—will cause the browser to generate an event.

Chapter 13: Basic Dynamic HTML

Sometimes, we want our code to respond to this interaction, so we listen for these
events, which let us know when we should execute our code.

Solution

There are two ways to handle events: the short way, and the W3C way. Each has
its pros and cons, but both allow you to execute a specified function when an
event occurs on a particular element.

The Short Way: Using Event Handlers

The shorter way of handling an event is to use the DOM 0 event handlers that
are assigned as shortcut properties of every element. Much as we saw in Chapter 5
when we discussed DOM O attribute shortcuts, these event handlers are not future-
proof. However, they do offer some advantages over standard W3C event
listeners:

[—Hvery browser that’s currently in operation supports DOM 0 event handlers
without the need for code branching.

[—Hach function executed by a DOM 0 event handler has access to the exact
element to which the event handler was assigned. (As you'll see later, this is
not always available in W3C event listeners.)

The main problem with utilizing DOM 0 event handlers is that they are not de-
signed to work with multiple scripts. Every time you assign a DOM 0 event
handler, you overwrite any previously assigned handler for that event. This can
interfere with the operation of multiple scripts that require event handling on
the same element. With W3C event listeners, you can apply any number of event
listeners on the same element, and enjoy the ability to remove any of them at
any time.

If you can be certain that your code will not interfere with someone else’s event
handling (e.g., you're placing events on elements that are created dynamically in
your own script), it will be safe to use DOM 0 event handlers. But—all things
being equal—it is safer to use the W3C event listeners wherever practical, as we
do in this book.

A number of DOM 0 event handlers are available via the browser; Table 13.1
lists the most commonly used handlers.

230 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

The Short Way: Using Event Handlers

Table 13.1. DOM 0 event handlers

DOM 0 Event{ W3C DOM |Indicated Action

Handler Event

onblur blur Remove focus from an element by clicking out-
side or tabbing away from it.

onfocus focus Focus the cursor on an element.

onchange change Remove focus from an element after changing
its content.

onmouseover |mouseover Move the mouse pointer over an element.

onmouseout |mouseout Move the mouse pointer out of an element.

onmousemove |mousemove Move the mouse pointer while it is over an ele-
ment.

onmousedown |mousedown Press a mouse button while the pointer is over
an element.

onmouseup mouseup Release a mouse button while the pointer is over
an element.

onclick click Press and release the main mouse button or
keyboard equivalent (Enter key) while the
pointer is over an element.

ondblclick |dblclick Double-click the main mouse button while the
pointer is over an element.

onkeydown keydown Press a keyboard key while an element has focus.

onkeyup keyup Release a keyboard key while an element has
focus.

onkeypress keypress Press and release a keyboard key while an ele-
ment has focus.

onsubmit submit Request that a form be submitted.

onload load Finish loading a page and all associated assets
(e.g., images).

onunload unload Request a new page to replace the currently-
displayed page, or close the window.

In using DOM 0 event handlers, once you have a reference to the element whose
events you want to handle, it’s a simple matter of assigning a handling function
to the appropriate property:

Order the print version of this book to get all 588 pages!

231

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

File: handle_events.js (excerpt)

var mylink = document.getElementById("mylink");
mylink.onclick = engage;

function engage()

{
alert("Engage!");

return false;

}

You’ll note that, in the function assignment (button.onclick = engage;), par-
entheses do not follow the function name. Their inclusion would execute the
function immediately, and assign the return value as the event handler. By omitting
the parentheses, you can assign the function itself to the handler. This also means
that you cannot supply arguments directly to the handling function: the function
must obtain its information through other means.

Anonymous Functions
Tip@

Instead of supplying a reference to a named function, you can supply an
anonymous function for an event handler:

var mylink = document.getElementById("mylink");

mylink.onclick = function()

{
alert("Engage!");

return false;

}

Depending on whether you need to reuse the handling function (and your
own coding preferences), this can be an easier way of writing event handling
code.

The return value of the handling function determines whether the default action
for that event occurs. So, in the preceding code, if mybutton were a hyperlink,
its default action when clicked would be to navigate to its href location. By re-
turning false, the engage function does not allow the default action to occur,
and the hyperlink navigation will not take place. If the return value were true,
the default action would occur after the event handling function’s code had ex-
ecuted.

232 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

The W3C Way (Event Listeners)

When an event occurs, detailed information about the how, why, and where of
that event is written to an event object. In Internet Explorer, this takes the form
of a global window.event object, but in other browsers the object is passed as an
argument to the event-handling function. This difference is fairly easy to address
within the handling function:

File: handle_events2.js (excerpt)
function engage(event)

{
if (typeof event == "undefined")

event = window.event;

}

alert("The screen co-ordinates of your click were: " +
event.screenX + ", " + event.screenY);

return false;

}

The event object allows you to find out a range of details, such as which element
was clicked, whether any keys were pressed, the coordinates of the event (e.g.,
where the cursor was located when the mouse button was clicked), and the type
of event that triggered the function. Quite a few of the event property names are
consistent across browsers, but a few dlffer The Mozilla event properties can be
viewed at the Gecko DOM Reference while the Internet Explorer event proper-
ties can be seen at MSDN.2 For properties whose names vary between browsers,
the potential for associated problems can normally be rectified with a little object
detection; we’ll discuss this in detail later in this chapter.

The W3C Way (Event Listeners)

Although the DOM 0 event handlers are quick and easy, they do have limitations
(aside from the fact that eventually they will become deprecated). The main ad-
vantage of the W3C event listeners is that they natively support the addition
and removal of multiple handling functions for the same event on a single element.
Event listeners also have the capability to respond to events in several phases
(though most browsers don’t yet support this capability).

U http://www.mozilla.org/docs/dom/domref/dom_event_ref.html
2 http://msdn.microsoft.com/workshop/author/dhtml/reference/objects/obj_event.asp

Order the print version of this book to get all 588 pages! 233

http://www.mozilla.org/docs/dom/domref/dom_event_ref.html
http://msdn.microsoft.com/workshop/author/dhtml/reference/objects/obj_event.asp
http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

In the W3C specification, an event can be added to an element using the element’s
addEventListener method, but Internet Explorer for Windows chooses to use
a method called attachEvent, which has a slightly different syntax.?

To add an event listener in every browser except Internet Explorer, you would
write code similar to this:

var mylink = document.getElementById("mylink");
mylink.addEventListener("click", engage, false);
To support Internet Explorer, you’d need this code:

var mylink = document.getElementById("mylink");
mylink.attachEvent("onclick", engage);

As well as the differing function names, it’s important to note that Internet Ex-
plorer uses the DOM 0 handler name for the event—"onclick"—rather than
the true event name: "click". The extra argument that’s supplied to
addEventListener specifies whether the listener is applied during the capture
(true) or bubble (false) event propagation phase. Event propagation is explained
in more detail in the discussion below, but bubble is really the most useful choice,
and ensures the same behavior in standards-compliant browsers as in Internet
Explorer.

The differences between these two approaches are fairly easy to work around
using an abstracting function. We can also provide a fallback for browsers that
don’t support W3C event listeners at the same time:

File: handle_events3.js (excerpt)
function attachEventListener(target, eventType, functionRef,

capture)
{ if (typeof target.addEventListener != "undefined")
{ target.addEventListener(eventType, functionRef, capture);
ilse if (typeof target.attachEvent != "undefined")
{ target.attachEvent("on" + eventType, functionRef);
}

3Internet Explorer for Mac doesn’t support either of these event models, so we have to rely on the
DOM 0 handlers to work with events in this browser.

234 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

The W3C Way (Event Listeners)

else

{
eventType = "on" + eventType;
if (typeof target[eventType] == "function")
{

var oldListener = target[eventType];

target[eventType] = function()
{

oldListener();

return functionRef();
}s
}

else

{

}
}
}

target[eventType] = functionRef;

The first two if statements deal with the standards-based and Internet Explorer
methods respectively, but the catch-all else deals with older browsers that don’t
support either of these methods, particularly Internet Explorer 5 for Mac. In this
last case, a DOM 0 event handler is used, but to ensure that multiple functions
can be used to handle a single event for a particular element, a closure is used to
execute any existing functions that are attached to the event.

Closures are an advanced feature of JavaScript that relates to scoping (which
you can read about in Chapter 19). Closures allow an inner function to reference
the variables of the containing function even after the containing function has
finished running. Simon Willison has explained their usage in relation to event
handlers in some detail.* Suffice it to say that closures allow us to stack multiple
event handlers in browsers that don’t support W3C event listeners.

The cross-browser code for assigning an event listener is as follows:

File: handle_events3.js (excerpt)
var mylink = document.getElementById("mylink");

attachEventListener(mylink, "click", engage, false);

* http://www.sitepoint.com/blogs/2004/05/26/closures-and-executing-javascript-on-page-load/

Order the print version of this book to get all 588 pages! 235

http://www.sitepoint.com/blogs/2004/05/26/closures-and-executing-javascript-on-page-load/
http://www.sitepoint.com/blogs/2004/05/26/closures-and-executing-javascript-on-page-load/
http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

Not (quite) the Genuine Article
Although the DOM 0 event handler fallback mimics the ability to add mul-

tiple event listeners for one event type on an element, it does not provide
exact replication of the W3C event model, because specific handlers cannot
be removed from an element.

Whereas DOM 0 handlers allowed the cancellation of an element’s default action
by returning false, W3C event listeners achieve this goal slightly differently. To
cancel a default action in this model, we need to modify the event object. Internet
Explorer requires you to set its returnValue property to false; standards-based
implementations offer the preventDefault method to do the same thing. We
can create a small function that figures out the difference for us:

File: handle_events4.js (excerpt)
function stopDefaultAction(event)

{

event.returnValue = false;

if (typeof event.preventDefault != "undefined")
{

event.preventDefault();
}

}

We can call this function whenever we want to cancel the default action:

File: handle_events4.js (excerpt)
function engage(event)

{
if (typeof event == "undefined")
{
event = window.event;
}

alert("Engage!");
stopDefaultAction(event);

return false;

}

You still need to return false after executing stopDefaultAction in order to
ensure that browsers that don’t support the W3C event model will also prevent
the default action.

236 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

The W3C Way (Event Listeners)

Safari and W3C Event Listeners

Due to a bug in Safari, it’s impossible to cancel the default action of clicking
a hyperlink in that browser when using W3C event listeners. To achieve the
cancellation, you’ll have to use DOM 0 event handlers with a return value
of false.

Checking for attachEvent

hote
Internet Explorer for Windows actually passes an event object to the event-
handling function when attachEvent is used to attach an event listener.
However, we still need to check for the existence of this object for any
browsers that use the old event model.

One of the advantages of using W3C event listeners is that you can remove an
individual listener from an element without disturbing any other listeners on the
same event. This is not possible using the DOM 0 handlers.

Internet Explorer uses the detachEvent method, while the standards-compliant
browsers instead specify a method called removeEventListener. Each of these
methods operates fairly similarly to its listener-adding counterpart: an event type
must be supplied along with the function that was assigned to handle that event
type. The standard method also demands to know whether the event handler
was registered to respond during the capture or bubble phase.

Here’s a function that supports this approach across browsers:

File: handle_events5.js (excerpt)
function detachEventListener(target, eventType, functionRef,

capture)
{
if (typeof target.removeEventListener != "undefined")
{
target.removeEventListener(eventType, functionRef, capture);
}
else if (typeof target.detachEvent != "undefined")
{
target.detachEvent("on" + eventType, functionRef);
}
else
{
target["on" + eventType] = null;
}
}

Order the print version of this book to get all 588 pages! 237

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

The W3C Event Model and Anonymous Functions

hote
The W3C event model doesn’t allow for the removal of anonymous functions,
so if you need to remove an event listener, hang onto a reference to the
function in question.

In browsers that don’t support W3C event listeners, this function removes all
event handlers on the given event: it’s not possible to remove just one of them
and leave the others.

Discussion

Referencing the Target Element

Quite often, you’ll want to use the object that was the target of an event inside
the event handler itself. With DOM 0 event handlers, the use of the special
variable this inside a handling function will refer to the event target object.
Consider this code:

File: handle_events6.js (excerpt)
var mylink = document.getElementById("mylink");

mylink.onclick = engage;

function engage()

{
var href = this.getAttribute("href");

alert("Engage: " + href);

return false;

}

Here, this refers to the link with ID mylink. We can use it to get the link’s href
attribute.

However, if you use W3C event listeners, the target of the event is stored as part
of the event object, under different properties in different browsers. Internet
Explorer stores the target as srcElement, while the standards model stores it as
target. But the element to which these properties point isn’t necessarily the
element to which the event listener was assigned. It is, in fact, the deepest element
in the hierarchy affected by the event. Take a look at the following HTML.

238 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

The W3C Way (Event Listeners)

File: handle_events6.html (excerpt)
<p>
These are the voyages of the <a id="mylink"
href="enterprise.html">starship Enterprise.
</p>

If a click event listener were placed on the paragraph and a user clicked on the
link, the paragraph’s click event handler would be executed, but the event target
that was accessible through the above-mentioned properties would be the hyper-
link. Some browsers (most notably, Safari) even go so far as to count the text
node inside the link as the target node.

We can write a function that returns the event target irrespective of which
property has been implemented, but this does not solve the problem of finding
the element to which we originally applied the event listener.” Often, the best
resolution to this quandary is to iterate upwards from the event target provided
by the browser until we find an element that’s likely to be the element to which
we attached an event listener. To do this, we can perform checks against the
element’s tag name, class, and other attributes.

The abstracting event target function would look like this:

File: handle_events7.js (excerpt)
function getEventTarget(event)

{

var targetElement = null;

if (typeof event.target != "undefined")
{
targetElement = event.target;
}
else
{
targetElement = event.srcElement;
}

while (targetElement.nodeType == 3 &&
targetElement.parentNode != null)

{

targetElement = targetElement.parentNode;

>The W3C Standard specifies another property called currentTarget, which lets you get the
element to which the listener was assigned, but there is no Internet Explorer equivalent. Browsers
that support currentTarget also set up the event handler-style this variable with the same
value, but again, without Internet Explorer support, this isn’t particularly useful.

Order the print version of this book to get all 588 pages! 239

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

}

return targetElement;

}

The if-else retrieves the event target across browsers; the while loop then finds
the first non-text-node parent if the target reported by the browser happens to
be a text node.

If we want to retrieve the element that was clicked upon, we then make a call to
getEventTarget:

File: handle_events7.js (excerpt)

var mylink = document.getElementById("mylink");
attachEventListener(mylink, "click", engage, false);

function engage(event)

{
if (typeof event == "undefined")
{
event = window.event;
}

var target = getEventTarget(event);

while(target.nodeName.toLowerCase() != "a")

{
target = target.parentNode;
}
var href = target.getAttribute("href");

alert("Engage: " + href);

return true;

}

Because we know, in this case, that the event-handling function will be attached
only to links (<a> tags), we can iterate upwards from the event target, checking
for a node name of "a". The first one we find will be the link to which the
handler was assigned; this ensures that we aren’t working with some element inside
the link (such as a strong or a span).

240 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

The W3C Way (Event Listeners)

Obviously, this method of target finding is not ideal, and cannot be 100% accurate
unless you have knowledge of the exact HTML you’ll be working with. Recently,
much effort has gone into resolving this problem, and quite a few of the proposed
solutions offer the same this variable as is available under DOM 0 event handlers,
and in browsers that support the W3C Standard for event listeners (not Internet
Explorer).

One such solution is to make the event listening function a method of the target
object in Internet Explorer. Then, when the method is called, this will naturally
point to the object for which the method was called. This requires both the
attachEventListener and detachEventListener to be modified:

File: handle_events8.js (excerpt)
function attachEventListener(target, eventType, functionRef,

capture)
{ if (typeof target.addEventListener != "undefined")
{ target.addEventListener(eventType, functionRef, capture);
llse if (typeof target.attachEvent != "undefined")
{

var functionString = eventType + functionRef;
target["e" + functionString] = functionRef;

target[functionString] = function(event)

{
if (typeof event == "undefined")
{
event = window.event;
}
target["e" + functionString] (event);
};
target.attachEvent("on" + eventType, target[functionString]);
}
else
{
eventType = "on" + eventType;
if (typeof target[eventType] == "function")
{

var oldListener = target[eventTypel];

target[eventType] = function()

Order the print version of this book to get all 588 pages! 241

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

{

oldListener();

return functionRef();

}
}

else
{
target[eventType] = functionRef;
}
}
}

function detachEventListener(target, eventType, functionRef,
capture)

{

if (typeof target.removeEventListener != "undefined")

{

}
else if (typeof target.detachEvent != "undefined")

{

target.removeEventListener(eventType, functionRef, capture)

var functionString = eventType + functionRef;
target.detachEvent("on" + eventType, target[functionString]);

target["e" + functionString] = null;
target[functionString] = null;
}

else

{

}
}

target["on" + eventType] = null;

This line of thinking was well represented in entries to Peter Paul Koch’s improved
addEventconqxihjonﬁ

Another solution by Dean Edwards totally eschews the W3C event model in favor
of implementing DOM 0 event handlers with independent add and remove
abilities.”

® http://www.quirksmode.org/blog/archives/2005/10/_and_the_winner_I.html
7 http//dean.edwards.name/weblog/2005/10/add-event/

242 Order the print version of this book to get all 588 pages!

http://www.quirksmode.org/blog/archives/2005/10/_and_the_winner_1.html
http://www.quirksmode.org/blog/archives/2005/10/_and_the_winner_1.html
http://dean.edwards.name/weblog/2005/10/add-event/
http://dean.edwards.name/weblog/2005/10/add-event/
http://www.sitepoint.com/launch/92257e

The W3C Way (Event Listeners)

Although both of these solutions may prove to be well written and robust, they’re
largely untested as of this writing, so we’ll stick with the approach whose flaws
we know and can handle: the one presented in the main solution. Besides, in
practice, the process of iterating to find an event’s target isn’t as unreliable as it
may appear to be.

What is Event Bubbling, and How do I Control it?

You may have noticed that we needed to supply a third argument to the W3C
Standard addEventListener method, and that a capture argument was included
in our attachEventListener function to cater for this. This argument determines
the phase of the event cycle in which the listener operates.

Suppose you have two elements, one nested inside the other:

<p>
Nameless Ensign
</p>

When a user clicks on the link, click events will be registered on both the para-
graph and the hyperlink. The question is, which one receives the event first?

The event cycle contains two phases, and each answers this question in a different
way. In the capture phase, events work from the outside in, so the paragraph
would receive the click first, then the hyperlink. In the bubble phase, events
work from the inside out, so the anchor would receive the click before the para-

graph.

Internet Explorer and Opera only support bubbling, which is why attachEvent
doesn’t require a third argument. For browsers that support addEventListener,
if the third argument is true, the event will be caught during the capture phase;
if it is false, the event will be caught during the bubble phase.

In browsers that support both phases, the capture phase occurs first and is always
followed by the bubble phase. It’s possible for an event to be handled on the
same element in both the capture and bubbling phases, provided you set up
listeners for each phase.

These phases also highlight the fact that nested elements are affected by the same
event. If you no longer want an event to continue propagating up or down the
hierarchy (depending upon the phase) after an event listener has been triggered,
you can stop it. In Internet Explorer, this involves setting the cancelBubble

Order the print version of this book to get all 588 pages! 243

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

property of the event object to true; in the W3C model, you must instead call
its stopPropagation method:

File: handle_events9.js (excerpt)
function stopEvent(event)

{
if (typeof event.stopPropagation != "undefined")
{
event.stopPropagation();
}
else
{
event.cancelBubble = true;
}
}

If we didn’t want an event to propagate further than our event handler, we’d use
this code:

File: handle_events9.js (excerpt)
var mylink = document.getElementById("mylink");

attachEventListener(mylink, "click", engage, false);
var paragraph = document.getElementsByTagName("p")[0];
attachEventListener(paragraph, "click", engage, false);

function engage(event)

{
if (typeof event == "undefined")
{
event = window.event;
}

alert("She canna take no more cap'n!");
stopEvent (event);

return true;

}

Although we have assigned the engage function to listen for the click event on
both the link and the paragraph that contains it, the function will only be called

244 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Finding the Size of an Element

once per click, as the event’s propagation is stopped by the listener the first time
it is called.

Finding the Size of an Element

There are so many variables that affect the size of an element—content length,
CSS rules, font family, font size, line height, text zooming ... the list goes on.
Add to this the fact that browsers interpret CSS dimensions and font sizes incon-
sistently, and you can never predict the dimensions at which an element will be
rendered. The only consistent way to determine an element’s size is to measure
it once it’s been rendered by the browser.

Solution

You can tell straight away that it’s going to be useful to know exactly how big an
element is. Well, the W3C can’t help: there’s no standardized way to determine
the size of an element. Thankfully, the browser-makers have more or less settled
on some DOM properties that let us figure it out.

Although box model differences mean that Internet Explorer includes padding
and borders inconsistently as part of an element’s CSS dimensions, the
offsetWidth and offsetHeight properties will consistently return an element’s
width—including padding and borders—across all browsers.

Let’s imagine that an element’s dimensions were specified in CSS like this:

File: find_size_element.css

#enterprise
{

width: 350px;

height: 150px;

margin: 25px;

border: 25px solid #000000;

padding: 25px;
}

We can determine that element’s exact pixel width in JavaScript by checking the
corresponding offsetWidth and offsetHeight properties:

Order the print version of this book to get all 588 pages! 245

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

File: find_size_element.js (excerpt)
var starShip = document.getElementById("enterprise");
var pixelWidth = starShip.offsetWidth;
var pixelHeight = starShip.offsetHeight;

In Internet Explorer 6, Opera, Mozilla, and Safari, the variable pixelwidth will
now be set to 450, and the variable pixelHeight will be set to 250. In Internet
Explorer 5/5.5, pixelwidth will be 350 and pixelHeight 150, because those are
the dimensions at which the broken box model approach used in those browsers
will render the element. The values are different across browsers, but only because
the actual rendered size differs as well. The offset dimensions consistently calculate
the exact pixel dimensions of the element.

If we did not specify the dimensions of the element, and instead left its display
up to the default block rendering (thus avoiding the box model bugs), the values
would be comparable between browsers (allowing for scrollbar width differences,
fonts, etc.).

Attaining the Correct Dimensions

In order to correctly determine the dimensions of an element you must wait
until the browser has finished rendering that element, otherwise the dimen-
sions may be different from those the user ends up seeing. There’s no guar-
anteed way to ensure that a browser has finished rendering an element, but
it’s normally safe to assume that once a window’s 1oad event has fired, all
elements have been rendered.

Discussion

It is possible to retrieve the dimensions of an element minus its borders, but in-
cluding its padding. These values are accessed using the clientWidth and
clientHeight properties, and for the example element used above their values
would be 300 and 100 in Internet Explorer 5/5.5, and 400 and 200 in all other
browsers.

There is no property that will allow you to retrieve an element’s width without
borders or padding.

Finding the Position of an Element

IKnowing the exact position of an element is very helpful when you wish to posi-
tion other elements relative to it. However, because of different browser sizes,

246 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Finding the Position of an Element

font sizes, and content lengths, it’s often impossible to hard-code the position
of an element before you load a page. JavaScript offers a method to ascertain any
element’s position after the page has been rendered, so you can know exactly
where your elements are located.

Solution

The offsetTop and offsetLeft properties tell you the distance between the top
of an element and the top of its of fsetParent. But what is of fsetParent? Well,
it varies widely for different elements and different browsers. Sometimes it’s the
immediate containing element; other times it’s the html element; at other times
it’s nonexistent.

Thankfully, the solution is to follow the trail of offsetParents and add up their
offset positions—a method that will give you the element’s accurate absolute
position on the page in every browser.

If the element in question has no offsetParent, then the offset position of the
element itself is enough; otherwise, we add the offsets of the element to those of
its of fsetParent, then repeat the process for its of fsetParent (if any):

File: find_position_of_element.js (excerpt)
function getPosition(theElement)

{
var positionX = 0;
var positionY 0;

while (theElement != null)

{
positionX += theElement.offsetLeft;
positionY += theElement.offsetTop;
theElement = theElement.offsetParent;

}
return [positionX, positionY];
}
IE 5 for Mac Bug
note

Internet Explorer 5 for Mac doesn’t take the body’s margin or padding into
account when calculating the offset dimensions, so if you desire accurate
measurements in this browser, you should have zero margins and padding
on the body.

Order the print version of this book to get all 588 pages! 247

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

Discussion

The method above works for simple and complex layouts; however, you may run
into problems when one or more of an element’s ancestors has its CSS position
property set to something other than static (the default).

There are so many possible combinations of nested positioning and browser dif-
ferences that it’s almost impossible to write a script that takes them all into ac-
count. If you are working with an interface that uses a lot of relative or absolute
positioning, it’s probably easiest to experiment with specific cases and write special
functions to deal with them. Here are just a few of the differences that you might
encounter:

[In Internet Explorer for Windows and Mozilla/Firefox, any element whose
parent is relatively positioned will not include the parent’s border in its own
offset; however, the parent’s offset will only measure to the edge of its border.
Therefore, the sum of these values will not include the border distance.

[Iin Opera and Safari, any absolutely or relatively positioned element whose
offsetParent is the body will include the body’s margin in its own offset.
The body’s offset will include its own margin as well.

[—Iin Internet Explorer for Windows, any absolutely positioned element inside
a relatively positioned element will include the relatively positioned element’s
margin in its offset. The relatively positioned element will include its margin
as well.

Detecting the Position of the Mouse
Cursor

When working with mouse events, such as mouseover or mousemove, you will
often want to use the coordinates of the mouse cursor as part of your operation
(e.g., to position an element near the mouse). The solution explained below is
actually a more reliable method of location detection than the element position
detection method we discussed in “Finding the Position of an Element”, so if it’s
possible to use the following solution instead of the previous one, go for it!

248 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Detecting the Position of the Mouse Cursor

Solution

The event object contains everything you need to know to work with the position
of the cursor, although a little bit of object detection is required to ensure you
get equivalent values across all browsers.

The standard method of obtaining the cursor’s position relative to the entire page
is via the pageX and pageY properties of the event object. Internet Explorer doesn’t
support these properties, but it does include some properties that are almost the
ones we want. clientX and clientY are available in Internet Explorer, though
they measure the distance from the mouse cursor to the edges of the browser
window. In order to find the position of the cursor relative to the entire page, we
need to add the current scroll position to these dimensions. This technique was
covered in Chapter 7; let’s use the getScrollingPosition function from that
solution to retrieve the required dimensions:

File: detect_mouse_cursor.js (excerpt)
function displayCursorPosition(event)

{
if (typeof event == "undefined")
{
event = window.event;
}

var scrollingPosition = getScrollingPosition();
var cursorPosition = [0, O];

if (typeof event.pageX != "undefined" &&
typeof event.x != "undefined")
{
cursorPosition[0] = event.pageX;
cursorPosition[1] = event.pageY;
}
else
{
cursorPosition[0] = event.clientX + scrollingPosition[O0];
cursorPosition[1] = event.clientY + scrollingPosition[1];

}

var paragraph = document.getElementsByTagName("p")[0];

paragraph.replaceChild(document.createTextNode (
“Your mouse is currently located at: " + cursorPosition[O] +
“;" + cursorPosition[1]), paragraph.firstChild);

Order the print version of this book to get all 588 pages! 249

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

return true;

}

clientX/clientY are valid W3C DOM event properties that exist in most
browsers, so we can’t rely on their existence as an indication that we need to use
them. Instead, within our event handler, we test for the existence of pageX. Inter-
net Explorer for Mac does have pageX, but it’s an incorrect value, so we must
also check for x. x is actually a nonstandard property, but most browsers support
it (the exceptions being Opera 8+ and Internet Explorer). It’s okay that Opera
8+ doesn’t support x, because the else statement is actually a cross-browser
method for calculating the mouse cursor position except in Safari, which incorrectly
gives clientX the same value as pageX. That’s why we still need to use both
methods of calculating the cursor position.

Displaying a Tooltip when you Mouse
Over an Element

Tooltips are a helpful feature in most browsers, but they can be a bit restrictive
if you plan to use them as parts of your interface. If you’d like to use layers that
appear when you want them to, aren’t truncated, and can contain more than
plain text, why not make your own enhanced tooltips?

Solution

For this example, we’ll apply a class, hastooltip, on all the elements for which
we’d like tooltips to appear. We’ll get the information that’s going to appear in
the tooltip from each element’s title attribute:

File: tooltips.html (excerpt)
<p>
These are the voyages of the <a class="hastooltip"
href="enterprise.html" title="USS Enterprise (NCC-1701) ..">
starship Enterprise.
</p>

From our exploration of browser events earlier in this chapter, you’ll probably
already have realized that we need to set up some event listeners to let us know
when the layer should appear and disappear.

250 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Displaying a Tooltip when you Mouse Over an Element

Tooltips classically appear in a fixed location when you mouse over an element,
and disappear when you mouse out. Some implementations of JavaScript tooltips
also move the tooltip as the mouse moves over the element, but I personally find
this annoying. In this solution, we’ll focus on the mouseover and mouseout events:

File: tooltips.js (excerpt)
addLoadListener(initTooltips);

function initTooltips()

{
var tips = getElementsByAttribute("class", "hastooltip");

for (var i = 0; i < tips.length; i++)

{

attachEventListener(tips[i], "mouseover", showTip, false);
attachEventListener(tips[i], "mouseout", hideTip, false);

}

return true;

}

We’ve already coded quite a few of the functions in this script, including
addLoadListener from Chapter 1, getElementsByAttribute from Chapter 5,
and the attachEventListener function that we created earlier in this chapter,
so the bulk of the code is in the event listener functions:

File: tooltips.js (excerpt)
function showTip(event)

{
if (typeof event == "undefined")
{
event = window.event;
}

var target = getEventTarget(event);

while (target.className == null ||
1/(~]|)hastooltip(|$)/.test(target.className))
{
target = target.parentNode;
}

var tip = document.createElement("div");
var content = target.getAttribute("title");

Order the print version of this book to get all 588 pages! 251

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

target.tooltip = tip;
target.setAttribute("title", "");

if (target.getAttribute("id") != "")
{
tip.setAttribute("id", target.getAttribute("id") + "tooltip");
}
tip.className = "tooltip";

tip.appendChild(document.createTextNode(content));

var scrollingPosition = getScrollingPosition();
var cursorPosition = [0, O];

if (typeof event.pageX != "undefined" &&
typeof event.x != "undefined")
{
cursorPosition[0] = event.pageX;
cursorPosition[1] = event.pageY;

}
else
{
cursorPosition[0] = event.clientX + scrollingPosition[O0];
cursorPosition[1] = event.clientY + scrollingPosition[1];
}
tip.style.position = "absolute";

tip.style.left = cursorPosition[0] + 10 + "px";
tip.style.top = cursorPosition[1] + 10 + "px";
document.getElementsByTagName ("body")[0].appendChild(tip);

return true;

}

After getting a cross-browser event object, and iterating from the base event target
element to one with a class of hastooltip, showtip goes about creating the
tooltip (a div). The content for the tooltip is taken from the title attribute of
the target element, and placed into a text node inside the tooltip.

To ensure that the browser doesn’t display a tooltip of its own on top of our en-
hanced tooltip, the title of the target element is then cleared—now, there’s
nothing for the browser to display as a tooltip, so it can’t interfere with the one
we’ve just created. Don’t worry about the potential accessibility issues caused by
removing the title: we’ll put it back later.

252

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Displaying a Tooltip when you Mouse Over an Element

Controlling Tooltip Display in Opera

hote

Opera still displays the original title even after we set it to an empty string.
If you wish to avoid tooltips appearing in this browser, you’ll have to stop
the default action of the mouseover using the stopDefaultAction function
from “Handling Events”, the first section of this chapter. Be aware that this
will also affect other mouseover behavior, such as the status bar address
display for hyperlinks.

To provide hooks for the styling of our tooltip, we assign the tooltip element an
ID that’s based on the target element’s ID (targetIDtooltip), and set a class
of tooltip. Although this approach allows for styles to be applied through CSS,
we are unable to calculate the tooltip’s position ahead of time, so we must use
the coordinates of the mouse cursor, as calculated when the event is triggered,
to position the tooltip (with a few extra pixels to give it some space).

All that remains is to append the tooltip element to the body, so it will magically
appear when we mouse over the link! With a little bit of CSS, it could look like
Figure 13.1.

Figure 13.1. A dynamically generated layer that appears on
mouseover

"Space — the final frontier. These are the voyages of the

starship Entererise, her five-year mussion: to explore strange
new worlds, %&s :

holdy go where s B GICC70

When the mouse is moved off the element, we delete the tooltip from the docu-
ment, and it will disappear:

File: tooltips.js (excerpt)
function hideTip(event)

{

if (typeof event == "undefined")

{

Order the print version of this book to get all 588 pages! 253

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

event = window.event;

}

var target = getEventTarget(event);

while (target.className == null ||
/(|)hastooltip(|$)/.test(target.className))

{
}

if (target.tooltip != null)
{

target = target.parentNode;

target.setAttribute("title",
target.tooltip.childNodes[0].nodeValue);
target.tooltip.parentNode.removeChild(target.tooltip);

}

return false;

}

Earlier, in showTip, we created a reference to the tooltip element as a property
of the target element. Having done that, we can remove it here without needing
to search through the entire DOM. Before we remove the tooltip, we retrieve its
content and insert it into the title of the target element, so we can use it again
later.

Do those Objects Exist?
Tip@

You should check that objects created in other event listeners actually exist
before attempting to manipulate them, because events can often misfire, and
you can’t guarantee that they will occur in a set order.

Discussion

One problem with the code above is that if the target element is close to the right
or bottom edge of the browser window, the tooltip will be cut off. To avoid this,
we need to make sure there’s enough space for the tooltip, and position it accord-

ingly.
By checking, in each dimension, whether the mouse position is less than the

browser window size minus the tooltip size, we can tell how far to move the layer
in order to get it onto the screen:

254 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Displaying a Tooltip when you Mouse Over an Element

File: tooltips2.js (excerpt)
function showTip(event)

{
if (typeof event == "undefined")
{
event = window.event;
}
var target = getEventTarget(event);
while (target.className == null ||
/(|)hastooltip(|$)/.test(target.className))
{
target = target.parentNode;
}

var tip = document.createElement("div");
var content = target.getAttribute("title");

target.tooltip = tip;
target.setAttribute("title", "");

if (target.getAttribute("id") != "")
{
tip.setAttribute("id", target.getAttribute("id") + "tooltip");
}
tip.className = "tooltip";

tip.appendChild(document.createTextNode(content));

var scrollingPosition = getScrollingPosition();
var cursorPosition = [0, O];

if (typeof event.pageX != "undefined" &&
typeof event.x != "undefined")
{
cursorPosition[0] = event.pageX;
cursorPosition[1] event.pageY;
}
else
{
cursorPosition[0] = event.clientX + scrollingPosition[O0];
cursorPosition[1] event.clientY + scrollingPosition[1];

}

tip.style.position = "absolute";

Order the print version of this book to get all 588 pages! 255

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

tip.style.left = cursorPosition[0] + 10 + "px";
tip.style.top = cursorPosition[1] + 10 + "px";
tip.style.visibility = "hidden";

document.getElementsByTagName ("body")[0].appendChild(tip);
var viewportSize = getViewportSize();

if (cursorPosition[0] - scrollingPosition[0] + 10 +
tip.offsetWidth > viewportSize[0] - 25)
{

tip.style.left = scrollingPosition[0] + viewportSize[0] - 25 -
tip.offsetWidth + "px";
}

else

{

tip.style.left = cursorPosition[0] + 10 + "px";

}

if (cursorPosition[1] - scrollingPosition[1] + 10 +
tip.offsetHeight > viewportSize[1] - 25)

{
if (event.clientX > (viewportSize[0] - 25 - tip.offsetWidth))
{
tip.style.top = cursorPosition[1] - tip.offsetHeight - 10 +
Ilpxll ;
}
else
{
tip.style.top = scrollingPosition[1] + viewportSize[1] -
25 - tip.offsetHeight + "px";
}
}
else
{
tip.style.top = cursorPosition[1] + 10 + "px";
}

tip.style.visibility = "visible";

return true;

}

This function is identical to the previous version until we get to the insertion of
the tooltip element. Just prior to inserting the element, we set its visibility to
"hidden". This means that when it’s placed on the page, the layer will occupy

256 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Sorting Tables by Column

the same space it would take up if it were visible, but the user won’t see it on the
page. This allows us to measure the tooltip’s dimensions, then reposition it without
the user seeing it flash up in its original position.

In order to detect whether the layer displays outside of the viewport, we use the
position of the cursor relative to the viewport. This could theoretically be obtained
by using clientX/clientY, but remember: Safari gives an incorrect value for this
property. Instead, we use our cross-browser values inside cursorPosition and
subtract the scrolling position (which is the equivalent of clientX/clientY). The
size of the viewport is obtained using the getViewportSize function we created
in Chapter 7, then, for each dimension, we check whether the cursor position
plus the size of the layer is greater than the viewport size (minus an allowance
for scrollbars).

If part of the layer is going to appear outside the viewport, we position it by
subtracting its dimensions from the viewport size; otherwise, it’s positioned
normally, using the cursor position.

The only other exception to note is that if the layer would normally appear outside
the viewport in both dimensions, when we are positioning it vertically, it is
automatically positioned above the cursor. This prevents the layer from appearing
directly on top of the cursor and triggering a mouseout event. It also prevents
the target element from being totally obscured by the tooltip, which would prevent
the user from clicking on it.

Measuring Visible Tooltip Dimensions
Tip@

In order for the dimensions of the tooltip to be measured it must first be
appended to the document. This will automatically make it appear on the
page, so to prevent the user seeing it display in the wrong position, we need
to hide it. We do so by setting its visibility to "hidden" until we have
finalized the tooltip’s position.

We can’t use the more familiar display property here, because objects with

display set to "none" are not rendered at all, so they have no dimensions
to measure.

Sorting Tables by Column

Tables can be a mine of information, but only if you can understand them
properly. Having the ability to sort a table by its different columns allows users

Order the print version of this book to get all 588 pages! 257

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

to view the data in a way that makes sense to them, and ultimately provides the
opportunity for greater understanding.

Solution

To start off, we’ll use a semantically meaningful HTML table. This will provide
us with the structure we need to insert event listeners, inject extra elements, and
sort our data:

File: sort_tables_by_columns.html (excerpt)
<table class="sortableTable" cellspacing="0"
summary="Statistics on Star Ships">
<thead>

<tr>

<th class="c1" scope="col">

Star Ship Class
</th>

<th class="c2"
Power Output

</th>

<th class="c3"
Maximum Warp

</th>

<th class="c4"

scope="col">
(Terawatts)

scope="col">
Speed

scope="col">

Captain's Seat Comfort Factor
</th>
</tr>
</thead>
<tbody>
<tr>
<td class="c1">
USS Enterprise NCC-1701-A
</td>
<td class="c2">
5000
</td>
<td class="c3">
6.0
</td>
<td class="c4">
4/10
</td>
</tr>

258

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Sorting Tables by Column

First, we need to set up event listeners on each of our table heading cells. These
will listen for clicks to our columns, and trigger a sort on the column that was
clicked:

File: sort_tables_by_columns.js (excerpt)
function initSortableTables()

{

if (identifyBrowser() != "ieb5mac")

{

var tables

getElementsByAttribute("class", "sortableTable");

for (var i = 0; i < tables.length; i++)

{
var ths = tables[i].getElementsByTagName("th");

for (var k = 0; k < ths.length; k++)
{

var newA = document.createElement("a");
newA.setAttribute("href", "#");
newA.setAttribute("title",

"Sort by this column in descending order");

for (var m = 0; m < ths[k].childNodes.length; m++)

{
newA.appendChild (ths[k].childNodes[m]) ;

}
ths[k].appendChild (newA) ;

attachEventListener(newA, "click", sortColumn, false);

}
}
}

return true;

}

Internet Explorer 5 for Mac has trouble dealing with dynamically generated table
content, so we have to specifically exclude it from making any of the tables sort-
able.

Only tables with the class sortableTable will be turned into sortable tables,
so initSortableTable navigates the DOM to find the table heading cells in
these tables. Once they’re found, the contents of each heading cell are wrapped
in a hyperlink—this allows keyboard users to select a column to sort the table

Order the print version of this book to get all 588 pages! 259

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

by—and an event listener is set on these links to monitor click events, and ex-
ecute sortColumn in response. The title attribute of each link is also set,
providing the user with information on what will happen when the link is clicked.

The sortColumn function is fairly lengthy, owing to the fact that it must navigate
and rearrange the entire table structure each time a heading cell is clicked:

File: sort_tables_by_columns.js (excerpt)
function sortColumn(event)

{
if (typeof event == "undefined")
{
event = window.event;
}

var targetA = getEventTarget(event);

while (targetA.nodeName.toLowerCase() != "a")
{

targetA = targetA.parentNode;

}

var targetTh = targetA.parentNode;

var targetTr = targetTh.parentNode;

var targetTrChildren = targetTr.getElementsByTagName("th");

var targetTable = targetTr.parentNode.parentNode;

var targetTbody = targetTable.getElementsByTagName("tbody")[O0];
var targetTrs = targetTbody.getElementsByTagName("tr");

var targetColumn = 0;

for (var i = 0; i < targetTrChildren.length; i++)
{
targetTrChildren[i].className = targetTrChildren[i].className.
replace(/("|)sortedDescending([$)/, "$1");
targetTrChildren[i].className = targetTrChildren[i].className.
replace(/(~|)sortedAscending(|$)/, "$1");

if (targetTrChildren[i] == targetTh)

{
targetColumn = 1i;
if (targetTrChildren[i].sortOrder == "descending" &&
targetTrChildren[i].clicked)
{
targetTrChildren[i].sortOrder = "ascending";
targetTrChildren[i].className += " sortedAscending";

260 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Sorting Tables by Column

targetA.setAttribute("title",
"Sort by this column in descending order");

}
else
{
if (targetTrChildren[i].sortOrder == "ascending" &&
!targetTrChildren[i].clicked)
{
targetTrChildren[i].className += " sortedAscending";
}
else
{
targetTrChildren[i].sortOrder = "descending";
targetTrChildren[i].className += " sortedDescending";
targetA.setAttribute("title",
"Sort by this column in ascending order");
}
}
targetTrChildren[i].clicked = true;
}
else
{
targetTrChildren[i].clicked = false;
if (targetTrChildren[i].sortOrder == "ascending")
{
targetTrChildren[i].firstChild.setAttribute("title",
"Sort by this column in ascending order");
}
else
{
targetTrChildren[i].firstChild.setAttribute("title",
"Sort by this column in descending order");
}

}
}

var newTbody = targetTbody.cloneNode(false);

for (var i = 0; i < targetTrs.length; i++)
{
var newTrs = newTbody.childNodes;
var targetValue = getInternalText(
targetTrs[i].getElementsByTagName("td")[targetColumn]);

Order the print version of this book to get all 588 pages! 261

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

for (var j = 0; j < newTrs.length; j++)
{

var newValue = getInternalText(

newTrs[j].getElementsByTagName("td")[targetColumn]);

if (targetValue == parselnt(targetValue, 10) &&
newValue == parselnt(newValue, 10))
{
targetValue = parselnt(targetValue, 10);
newValue = parselnt(newValue, 10);

else if (targetValue == parseFloat(targetValue) &&
newValue == parseFloat(newValue))
{
targetValue = parseFloat(targetValue, 10);
newValue = parseFloat(newValue, 10);

}

if (targetTrChildren[targetColumn].sortOrder ==
"descending")

{

if (targetValue >= newValue)

break;
}
}

else

{

if (targetValue <= newValue)

break;
}
}
}

if (j >= newTrs.length)

newTbody.appendChild(targetTrs[i].cloneNode(true));

}
else
{
newTbody.insertBefore(targetTrs[i].cloneNode(true),
newTrs[jl);
}

262

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Sorting Tables by Column

targetTable.replaceChild(newTbody, targetTbody);
stopDefaultAction(event);

return false;

}

The first for loop that occurs after all the structural variables have been defined
sets the respective states for each of the table heading cells when one of them is
clicked. Not only are classes maintained to identify the heading cell on which
the table is currently sorted, but a special sortOrder property is maintained on
each cell to determine the order in which that column is sorted. Initially, a column
will be sorted in descending order, but if a heading cell is clicked twice consecut-
ively, the sort order will be changed to reflect an ascending sequence. Each
heading cell remembers the sort order state it exhibited most recently, and the
column is returned to that state when its heading cell is re-selected. The title
of the hyperlink for a clicked heading cell is also rewritten depending upon the
current sort order, and what the sort order would be if the user clicked on it again.

The second for loop sorts each of the rows that’s contained in the body of the
table. A copy of the original tbody is created to store the reordered table rows,
and initially this copy is empty. As each row in the original tbody is scanned, the
contents of the table cell in the column on which we’re sorting is compared with
the rows already in the copy.

In order to find the contents of the table cell, we use the function
getInternalText:

File: sort_tables_by_columns.js (excerpt)
function getInternalText (target)

{
var elementChildren = target.childNodes;
var internalText = "";

for (var i = 0; i < elementChildren.length; i++)
{
if (elementChildren[i].nodeType == 3)
{
if (!/~\s*$/.test(elementChildren[i].nodeValue))
{

}
}

internalText += elementChildren[i].nodeValue;

Order the print version of this book to get all 588 pages! 263

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

else

{

internalText += getInternalText(elementChildren[i]);

}
}

return internalText;

}

getInternalText extracts all of the text inside an element—including all of its
descendant elements—by recursively calling itself for each child element and
concatenating the resultant values together. This allows us to access the text inside
a table cell, irrespective of whether it’s wrapped in elements such as spans,
strongs, or ems. Any text nodes that are purely whitespace (spaces, tabs, or new
lines) are ignored via a regular expression check.

When sortColumn finds a row in the copy whose sorted table cell value is “less”
than the one we’re scanning, we insert a copy of the scanned row into the copied
tbody. For a column in ascending order, we simply reverse this comparison: the
value of the row in the copy must be “greater” than that of the scanned row.

However, before a comparison is made, we check whether the contents of the
sorted table cell can be interpreted as an integer or a float; if so, the comparison
values are converted. This makes sure that columns that contain numbers are
sorted properly; string comparisons will produce different results than number
comparisons.

Once all of our original rows have been copied into the new tbody, that element
is used to replace the old one, and we have our sorted table!

Using the sortableDescending and sortableAscending classes, which are as-
signed to the currently sorted table heading cells, we can use CSS to inform the
user which column the table is sorted on, and how it is sorted, as shown in Fig-
ure 13.2 and Figure 13.3.

264 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Sorting Tables by Column

Figure 13.2. A sortable table sorted in descending order on the
fourth column

Power Output Maximum Captain’s Seat
(Terra Watts) Warp Speed |Comfort Factor

Star Ship Class

Ferengi Trading 500 40 810
“essel ’

USS Enterprise

NCC-1701-D 6500 g5 540
LSS Enterprize

NCC-A 7014 5000 B0 4410
Klingon Bird of Prey 3000 6.5 1110
Class E

Geo-stationary 2 01 0M0
Satellite

Figure 13.3. A sortable table sorted in ascending order on the
second column

Star Ship Class Power Output s Maximum Captain’s Seat
¥ (Terra Watts) Warp Speed Comfort Factor

Class E

Geo-stationary 2 01 0M0

Satellite

Ferengi Trading 500 40 a1

“essel

Klingon Bird of Prey 3000 B.5 1410

USS Enterprise

NCC-1701-A 5000 5.0 4110

LSS Enterprize

NCC-1701-D Ba00 g4 810

Order the print version of this book to get all 588 pages! 265

http://www.sitepoint.com/launch/92257e

Chapter 13: Basic Dynamic HTML

Summary

The two main pillars of DHTML are the capturing of events, and the reorganiz-
ation and creation of page elements via the DOM. Using these principles, it’s
possible to capture many of the different ways that users interact with a page
and make the interface respond accordingly.

As can be seen by the number and quality of JavaScript-enhanced web applications
that are now available, the features DHTML can bring to new interfaces represents
one of the biggest growth areas for innovative JavaScript. The foundations and
basic examples shown in this chapter give you a sense of the power that it can
deliver inside a user’s browser. We’ll expand upon this further in the following
chapters as we build some really interesting interfaces.

266 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

What’s Next?

If you’ve enjoyed these chapters from The JavaScript Anthology:
101 Tips, Tricks & Hacks, why not order yourself a copy?

The JavaScript Anthology: 101 Tips, Tricks & Hacks is the ultimate
toolkit for web developers using JavaScript. It's a collection of over
100 thoroughly-tested, customizable, and elegant solutions that
will enable you to easily add usable and accessible interactivity to
your site.

As JavaScript guru Bobby van der Sluis says, “The JavaScript
Anthology is the cookbook of modern JavaScript, discussing only
best practice solutions—a wuseful, timesaving, and practical
reference for your desk."

The JavaScript Anthology: 101 Essential Tips, Tricks & Hacks also
includes download access to all of the best practice code samples
used throughout the book—plug them right into your own
projects without any retyping!

In the rest of the book, you'll find solutions that will:

= Search and replace text using regular expressions

= Validate email addresses on your web forms

= Make a slideshow of images

= Make a style sheet switcher

= Build an accessible drop-down menu system

= Construct drag 'n' drop interfaces using AJAX

= Use JavaScript and Flash together

= Make your JavaScript accessible

= Use XMLHttpRequest to build AJAX applications
= Optimize your JavaScript code so that it runs faster
= And much more!

On top of that, order direct from sitepoint.com and you’ll receive
a free 17”7 x 247 poster of your choice!

Order now and get it delivered to vour doorstep!

https://sitepoint.com/bookstore/go/49/92257e

Index
Symbols

!= inequality operator, 49
== non-identity operator, 50
. wildcard character, 56

== equality operator, 48
=== identity operator, 50

A
abs method, Math class, 278
absolute positioning
browser differences, 248
CSS clip property and, 305
drop-down lists, 509
iframe elements, 357
menus, IE, 332
news ticker example, 299
abstraction
direct referencing and, 520
object orientation feature, 516, 522,
549
of tasks as functions, 548
Access Matters web site, 438
accessibility
(see also keyboard accessibility; screen
readers)
attempted definition of, 386
automatically initiated scripts, 441
current sub-branch display, 383
device-independent event handlers,
393-394
frames and, 135
hiding menu elements, 326
keyboard and mouse, 395-402
keyboard navigation and, 368
limitations of menus, 326
non-programming aspects, 387

popups and, 129

screen readers and, 436456
slider controls, 428-436
tooltip display and, 402-411
ActionScript, 461
activate event, IE, 394, 397
:active pseudo-class, 325
ActiveX objects, 3, 468
(see also Flash; XMLHttpRequest
object)
Flash detection and, 458
Flash version detection, 460
FSCommand support and, 461, 463
memory leaks and, 556
actuate event, 393
addDomPFunction function, 562
addEventListener method, 16, 234,
243,560
addLoadListener function, 15
accessible tooltip example, 405
adding a new style sheet, 226
auto-complete text fields, 507
clip-based transitions, 306
custom dialog example, 483
drag-and-drop effects, 282
image swapping, 169
soccer ball animation, 272
tooltip example, 251
WYSIWYG editor, 492
addRule method, IE, 221, 226
AJAX (Asynchronous JavaScript and
XML), 468
frameworks, 476
keyboard accessibility, 401
screen readers and, 446
Ajile module, 532
alert dialog
error analysis and, 23
error messages, 119, 441
page alternative, 25

Index

screen readers and, 449
all property, document object
accessible tooltip example, 405
browser detection and, 196
cleaning functions using, 558
elements by attribute value, 98
alternate style sheets, 207, 211-212
animated GIFs, 189
animation
achieving smoothness, 278-281
applicable Flash techniques, 278
automated slideshows, 173
drawing times, 280
frame rate changes, 279
optimization excluding, 536
realism in, 274
scrolling news ticker, 298-305
soccer ball example, 272-278
straight line movement, 270
transition effects, 305-311
anonymous functions
creating, 12
DOM method loading, 562
event handlers and, 232
inline declaration, 269
setInterval alternative, 273
W3C event model and, 238
antialiasing, 279
appendChild method, 88, 92
arguments collection, 547
arithmetic operators, 31-33
(see also Math class)
array-literals, 66
arrays, 65-78
adding or removing members, 72
alternate style sheets, 214
clock display, 183
code efficiency and, 550
collections similar to, 83
date and time comparisons, 164
Date object methods and, 153
drop-down menus and, 503

example, 67

forms collection as, 104

image preloading, 168

inverse sorting, 380

multi-dimensional arrays, 66, 76

radio button access, 110

select box access, 113

slideshow automation, 175

sorting, 75, 77

strings from, 71

writing debugging data to, 25
arrow keys

accessible drag-and-drop functional-

ity, 400

accessible slider control, 433

drop-down menus and, 508

key codes for, 424

keyboard accessible menus and,

391, 411, 421, 424, 426, 428

arrow submenu indicators, 334, 337
assistive technologies, 5

(see also screen readers)
associative arrays

Flash version detection, 460

forms collections as, 104

frames collections as, 136
asterisks

implying all elements, 405

in regular expressions, 56

tag name wildcards, 98
asynchronous processing

(see also AJAX)

load requests, 168

open method requests, 471

updates and accessibility, 442, 453
attachEvent method, 1E

addEventListener and, 16, 234, 243

attachEventListener and, 330

checking for, 237

circular references and, 559

event object and, 334

566

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

load event and, 560
attachEventListener function, 234,
241, 243
accessible rollover example, 396
accessible tooltip example, 404
circular reference cleaning, 559
click events and, 367
drag-and-drop effects, 282
drop-down menu example, 327, 330
screen reader identification, 450
tooltip example, 251
attributes
accessibility under DOM 0, 96
copying, 93
reading and writing values, 95-98
reading unverified, 97
retrieving elements with given, 98—
100
auto-complete text fields, 502
automatic radix detection, 41
automatically initiated scripts, 441

B

back button problems, 479

background color slider, 317

background images, 168, 334

background masking, 486

background-color property, 488

back-references, 62

backslash escaping, 45-46

backtraces, 21

backwards navigation and accessibility,
420

base of numbers, 41

baseOffset and extentOffset properties,
501

behavior layer, 514

behavioral pairing and accessibility, 395

benchmarking tests, 545, 547

best practices, 5, 453

block elements, 299

blur event listeners, 507
accessible rollover example, 396
accessible slider control, 432
blur events, 417, 511
blur method
accessibility problems, 399
window object, 132
body element loading check, 560, 562
bold and italic text creation, 493
Boolean results, switch statements, 542
box model bugs, 246
box model calculations, 199
braces, 11
object literals use of, 71
typeof operator, problems with, 193
break statements, 116, 540, 542
browser detection, 194-198
(see also feature detection)
continuing need for, 191
drag-and-drop effects, 282
drop-down menu examples, 329,

359,510

feature detection alternative, 128,
192

identifyBrowser function, 197, 222,
226,510

screen readers, 369-370, 449
when to use, 194

browser support
addEventListener method, 17
advantages of feature detection, 192
callback functions, 63
child selectors, 336
currentTarget property, 239
designMode property, 489
event listeners, 234
Flash, 457-460, 464
JavaScript, 4
opacity property, 176-177, 180-

181, 488

ranges, 498, 502

Order the print version of this book to get all 588 pages!

567

http://www.sitepoint.com/launch/92257e

Index

scripting support by screen readers,
388, 437-449
scrolling, 139
style sheet manipulation, 217
XMLHttpRequest object, 192, 468-
469, 476
browser window (se¢ viewport size)
browser-based screen readers (see screen
readers)
browsers
(see also browser support; cross-
browser scripting; Firefox; Inter-
net Explorer; Konqueror; Nets-
cape; Opera; Safari)
absolute within relative positioning,
300
animation speed and, 281
argument fetching benchmarking,
547
attribute handling by, 96, 100
box model bugs, 246
computed style retrieval, 205
cookie restrictions, 148
CSS 2 property interfaces, 202
CSS property value separators, 308
Date object display, 152
DHTML Accessibility project and,
393
editing engines, 495
element positioning differences, 248
element size determination, 246
elements, hiding optional, 123
error reporting, built-in, 20
event models, 134, 233-234
external debuggers and, 26
focus event bubbling, 397
getSelection implementation, 497
grouped selector treatment, 220
keyboard accessible menus, 421
keyboard navigation modes, 411
popup resizing, 132

references to stored lengths, 537
rendering modes, 140
repeat rates, 435
scrolling behavior, 137, 428
sorting behaviors, 77
speaking browsers, 370
style sheet switchers, built-in, 211
substring detection benchmarking,
546
tabindex attribute and, 391
title attribute and, 403
viewport size calculation, 349
voice capabilities, 452
browser-specific optimizations, 538,
545-548
bubble phase, 243
button element
accessible slider control, 430
keyboard accessibility and, 390
buttons
custom dialog example, 484
disabling and accessibility, 400
WYSIWYG editor interface, 494—
495, 499

C

caching
(see also preloading images)
icons, 376
staggered loading alternative, 173
XMLHttpRequest and, 475
calculation, minimizing, 537
call method, Flash/JavaScript Integra-
tion Kit, 464
callback functions, 62
camel casing, 202
cancelBubble property, 243
capture phase, 243
caret, in regular expressions, 56
caret, in text selections, 501
carriage return character, 46

568

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

Cascading Style Sheets (see CSS)
case changes, 47, 219
camel casing, 202
case-insensitive flag, 54
ceil method, Math object, 32, 34, 188
chaining event handlers, 17
charAt method, 184
checkboxes, 106
child selectors, CSS, 336
childNodes property, 85, 94
“chromeless” windows, 127-128
circular references, 556-560
class attribute
access methods, 98, 100
showing and hiding fields, 121, 123
storing validation types, 118
class inheritance, 517-518, 526-528
classes, multiple CSS, 100
className property, 83, 100
cleaning functions, 558
clearInterval function, 269, 274
clearMenus function, 343, 357
click event
device-independent event handling
and, 394
transition effects, 305
client-side language limitations, 2
clientWidth and clientHeight proper-
ties, 246
clientX and clientY properties, IE, 249
clip property, CSS, 305, 308
clip-based transitions, 305-311
clocks, image-based, 181
clone class, 295
cloneNode method, 91
cloning objects by prototyping, 519,
526

close method, window object, 131
closed property, checking, 129, 134
closures, 181, 235, 341, 531

code
(see also readability)
avoiding repetition, 550
compressing in production scripts,
552-556
hiding, 13, 18
inserting custom, 499
obfuscation, 18, 553
shortening for efficiency, 548-552
code efficiency (see optimization)
collapse method, 501
collections
checking loading, 562
DOM 0, 85
from getElementsByTagName, 83
color slider control, 317
color value normalization, 206
comments
code efficiency and, 548, 552
hiding code with HTML, 13
removing URL protocols with, 554
source code obfuscation and, 18
communication interfaces (see data
transmission)
compare function, 76, 380
compatMode property, document ob-
ject, 198
compressing script code, 18
computed styles, 204
conditions, compacting, 551
Connect Outloud screen reader, 445,
448,451
consistent coding practice, 5
constants, Math object, 32
constructors, 520, 525, 527
contains methods
custom, for accessible drop-downs,
418
event target checking, 428
proprietary IE, 332, 360

Order the print version of this book to get all 588 pages!

569

http://www.sitepoint.com/launch/92257e

Index

content (se¢ dynamic content; separa-
tion of content...)
Content-Type headers, 472
continue statements, 543
control characters, 46
cookie property, document object, 144
cookies, 143-150
maintaining alternate style sheet
states, 212
restricting access, 147
setting expiry values, 146
uses, 150
Coordinated Universal Time (UTC),
152, 154
createDialog function, 483, 485
createElement method, 87
createElementNS method, 88
createRange method, 497, 501
create TextNode method, 88
cross-browser scripting
accessibility, 436
computed style retrieval, 205-206
drag-and-drop functionality, 281
event listeners and, 235, 282
mouse cursor position, 250, 257
style sheet modification, 220
cross-frame scripting, 135-137
CSS, 201-227
(see also style sheets)
controlling element display, 121, 123
disabling optional elements, 124
opacity property in CSS 3, 180
opacity setting, 176-177, 180-181
pseudo-classes, 169, 325, 396, 404
System Colors, CSS 2, 403, 410
tag uppercasing by IE, 219
target property, CSS 3, 133
using multiple classes, 100
CSS1Compat value, 198
cssFloat property, 202
currency values, 38

current branch opening, 378
currentStyle property, IE, 205-206
currentTarget property, 239
cursors (see mouse cursor)

curtain transitions, 309

custom code insertion, 499
custom dialogs, 481-489

D

data transmission

requesting data from servers, 470

without XMLHttpRequest, 476-481

XMLHttpRequest and, 468-476
data types, 16

arrays, 66

comparing unequal, 49

object literal properties, 71
date format, cookie expiry, 146
Date object, 151-154

calculating the day of the week, 162

compatible date formats, 161

date and time comparisons, 152,

159-166

formatting by browsers, 152

formatting difference results, 164

formatting into sentences, 154-157,

165

formatting methods, 153

ISO date formats, 156

limits on values, 163

meridian calculation, 158

Number function and, 40

string conversion, 37

time formatting, 157-159
day of the week calculations, 162
debugging scripts, 19-29
deceleration in animation, 275
decorations, popup windows, 131
default case, switch statements, 540
deleteContents method, 501
deleteRule method, 223

570

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

delimiters, 53-54
designMode property, 489, 492
detachEvent method, 237, 559
detachEventListener function, 241,
289, 450
DHTML, 229-266
DHTML Accessibility project, 390,
392-393
DHTML controls
accessible slider control, 428-436
scrolling news ticker, 298-305
slider controls, 311-318
DHTML menus, 321-383
drop-down menu example, 323-361
expanding menus, 361-378
keyboard accessibility, 390, 392,
411-420
tabindex attribute and, 391
usability, 421-428
dialogs, custom in-page, 481-489
digits (see numeric data)
directory paths, cookie, 148
disability and accessibility, 386, 388
disabled property, style sheets, 208,
215-216
disabling optional elements, 124
display property
IE 5 and 6, 325
iframes, 478
screen reader identification, 369
visibility and, 257, 368
displayReset function, 369, 381
displayTime function, 184
div elements
accessible tooltip example, 408
changing a paragraph into, 91
nested divs, 313
DOCTYPE declarations, 199
document object
accessing forms from, 105
Opera load event listeners, 17

Document Object Model (see DOM)
Dojo JavaScript framework, 476
dollar sign, regular expressions, 56, 62
Dolphin Hal screen reader, 444, 448-
451
DOM (Document Object Model), 9,
79-102
cross-frame scripting, 137
DHTML use, 229
element sizing properties, 245
methods, document loading and, 560
nodes and memory leaks, 556
W3C definition, 80
DOM 0 functionality
attributes as properties, 96
cleaning functions, 558
collections, 85
event handlers, 230, 558
DOMActivate event, 394
DOMFocusln event, 397
dot property method, 97
double slash notation, 554
download times, 548
drag-and-drop effects, 281-290
accessible slider control, 401
example interface, 289
hot zone, 289
keyboard accessibility, 400
reordering a list, 290-298, 400
drop sheets, 488
drop-down menu example, 323-361
adding timers, 338-345
constraining within windows, 345-
353
keyboard accessible version, 412-
423
select elements, 354-361
submenu arrows, 334-338
drop-down menus
auto-complete text fields, 502
horizontal navigation and accessibil-
ity, 426

Order the print version of this book to get all 588 pages!

571

http://www.sitepoint.com/launch/92257e

Index

keyboard accessibility, 411
positioning, 509
dynamic content and screen readers,
390, 442, 444, 453
Dynamic HTML (see DHTML)
dynamic variables, 537

E
ECMA-262 standard, 2, 461
editors
browser engines for, 495
code optimization in, 552
example WYSIWYG, 489-496
fully-functional, 496
efficient scripts (sec optimization)
element nodes, checking for, 87
elements
accessing via the DOM, 82
adding and removing multiple
classes, 100
changing types of, 91-93
creating editable, 489-496
creating, using the DOM, 87-91
default action cancellation, 236
dimensions, when rendered, 245—-
246
focus acceptance, 389
insertion options, 89
position of, when rendered, 246-
248, 348
prototype-based method creation,
523
removing or relocating, 93-95
repositioning, 348
retrieving by attribute value, 98-100
selecting all, 405
elements collection, 105, 118
em elements, 441
email address validation, 60, 115
emoticons, 499
encapsulation, 516, 520, 522

encryption, source code, 18
equality operator, 48, 50
equivalence and accessibility, 389
error objects, 24
error reporting
built-in, 20-23
external debuggers, 26
inline error messages, 119
page or window reporting, 25-26
screen reader form validation, 441
using alerts, 23-24
using try/catch blocks, 24
escape characters
formatting alerts, 24
regular expressions, 54
special characters in strings, 46
whitespace removal and, 555
escape function, 47
cookies, 144
sub-cookie separators, 149
eval function, 543-544
event bubbling, 243
addEventListener method and, 16
drop-down menu example, 330, 344
expanding menu example, 367
focus events, 397
menu repositioning and, 349
event handlers
attribute, code in, 8
behavioral pairing, 395
device-independence and accessibil-
ity, 393-394
multiple scripts and, 14
nonexistent elements, 10
XMLHttpRequest object, 472
event handling approaches, 229-245
DOM 0 event handlers, 230
W3C event listeners, 233
event listeners
checking object creation, 254
cross-browser, 282
event handlers and, 16

572

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

location choice, 284
removing, 237
event model, W3C, 238
event models, browser, 134, 233-234
event propagation, 234
event target checking, 428
event target property, 134
eventPhase property, 349
events
keyboard accessibility and, 389
speaking browsers, 371
execCommand method, 493
executelframeRPC function, 478
execution order, operators, 32
execution, stopping, 269
expanding menus, 361-371
folder tree menus and, 361
indicating expanded branches, 371-
376
restricting open branches, 377-378
Expires header, XMLHttpRequest, 475
expiry dates and times, cookies, 146
expressions
applying CSS rules in IE, 336
direct evaluation of, 551
external debuggers, 26
external dependencies, loading, 560

F

fading effects, 176-181
cross and straight fades, 181

feature detection, 128, 192-194
(see also browser detection)
ActiveX objects, 469
browser detection alternative, 194
cursor position detection, 249
omission of typeof operator, 193
opacity property support, 180
scroll position example, 137, 139
style sheet creation, 227
viewport size example, 141

file extensions, 168, 175
findHere function, 379
Firefox browser
(see also Mozilla browsers)
CSS 2 System Colors and, 410
errors console, 21
opacity support, 181
warnings console, 27
firstChild property, 85
Flash, Macromedia, 457-465
detecting browser support, 457-460
JavaScript animation and, 278
JavaScript communication with, 461
screen reader alternative, 455
version detection, 458-460
Flash/JavaScript Integration Kit, 464—
465
flickering, 213, 301
float property, CSS, 202, 325
floor method, Math object, 32, 34, 36
fly-out menus (see drop-down menus)
focus
accessible tooltip display on, 402-
411
keyboard accessibility and, 389
tabindex attribute and, 391
focus event listeners
accessible drop-down menu, 412-
413,418-419
accessible rollover example, 396
accessible slider control, 432
accessible tooltip example, 404
source of focus events, 394, 434
focus method
accessible form validation, 398, 440
misuse, 399
opening new windows, 132
remote scripting accessibility, 447
validation errors and, 399
:focus pseudo-class, 325

Order the print version of this book to get all 588 pages!

573

http://www.sitepoint.com/launch/92257e

Index

folder tree menus
accessibility, 411
example script, 374
expanding menus and, 361
indicating expanded branches, 371-
376
restricting open branches, 377-378
font size, custom tooltips, 410
for attribute, accessing, 98, 100
for loops
avoiding repetition using, 550
caching images, 168
nested, 67
node structure and, 92
radio button access, 111
validating radio buttons, 116
for-in iterators, 24
form element, 430
form validation, 113-121
example script, 117
form submission and, 116
inline error messages, 119
keyboard accessibility, 398
mandatory text fields, 113
screen reader accessibility, 440
validating several fields, 117
forms collection, 104, 106
forms processing, 103-125
displaying and hiding fields, 121
validating before submission, 116
forward slash delimiter, 54
frame rates, animation, 279
frames collection, 136
frames, communicating between, 135-
137
FSCommand feature, Flash, 461, 464
fscommand function, ActionScript, 462
function literals, 12
function pointers, 269
function references, 306
functional loops, 268

functions
abstraction and, 548
assignment to event handlers, 232
creating with prototype objects, 523
derivation of objects from, 519
execution order, 524
introduced, 8
variable access in nested, 530
variable scope and, 528

G
g (global flag), 54, 62
garbage collection, 556
gecko browsers, 196
(see also Mozilla)
get* methods, Date object, 153, 156
getAttribute method, 95, 98, 135
getAttributeNS method, 88
getComputedStyle method, 205-206
getDate method, 153
getDateOrdinal method, 156
getDateString method, Date object,
155-156, 159
getElementByld method, 9
accessing elements with, 28, 82
browser detection and, 196
getElementsByTagName and, 84
warnings from testing for, 28
getElementsByAttribute function, 98
tooltip example, 251
transition effect, 306
WYSIWYG editor, 492
getElementsByTagName method, 82
DOM O properties and, 85
iterating through elements, 98, 204,
473
getEventTarget function, 239
auto-complete text example, 511
drag-and-drop effects, 284
transition effect, 306
getHours method, Date object, 158

574

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

getPageDimensions function, 486
getPosition function, 273
getRangeAt method, 500
getRoughPosition function, 348, 407
getScrollingPosition function, 137, 249
accessible tooltip example, 407
custom dialog positioning, 485
drag-and-drop effects, 285
getSelection methods, 497
getTime method, Date object, 153,
163, 546
getTimeBetween function, 165
getTimeString method, 158
getURL function, ActionScript, 461
getUTC* methods, Date object, 154
getViewportSize function, 141
code efficiency example, 549
custom dialog example, 485
tooltip positioning, 257, 407
global flag, regular expressions, 54, 62
global variables
automatic scope assignment, 528
intuitive values, 175
naming conflicts and, 344, 555
stopwatch example, 184
GMT string format, 146
graceful degradation, 5
grouped selectors, CSS, 219

H

Hal screen reader (se¢ Dolphin Hal)
hidden elements
accessible slider control, 429
custom dialog positioning, 485
drag-and-drop reordering, 295
hiding menu elements, 326
hiding menus, 368
hiding optional fields, 121
hiding select elements, 358
offleft positioning, 326
screen readers and, 439

tooltip positioning, 256-257
hiding code, 13, 18
highlighting selections, 330, 371, 496
history of JavaScript, 2
Home Page Reader, 441, 444, 448-
449, 451
horizontal navigation bars, 426
horizontal overflow, 350
horizontally collapsing transitions, 309
hot zone, drag-and-drop effects, 289
href attribute, 382, 390
HTML
equivalent DOM hierarchy, 81
Flash and, 457
forms collection and, 106
menu examples, 322
hyphens in style attributes, 202

I
i (case-insensitive flag), 54
IBM Corporation, 392
icons
accessible drag-and-drop functional-
ity, 401
caching, 376
folder tree menus, 362, 371, 373
identifyBrowser function, 197, 222,
226,510
identity operator, 50
If-Modified-Since header, XMLHttpRe-
quest, 475
iframes
data transmission using, 476-481
menu display and, 354
WYSIWYG editor and, 490
image collection, 167
image swapping, 169
image-based clock, 184
random display, 171
image-based clock, 181-186
images, 167-189

Order the print version of this book to get all 588 pages!

575

http://www.sitepoint.com/launch/92257e

Index

fading in and out, 176-181
inserting, with the WYSIWYG edit-
or, 493
preloading, 167
slideshow automation, 173
staggered loading, 173
in command, 69
index pages, default, 382
indexes
arrays, 65, 69
multi-dimensional arrays, 67
radio button access, 110
select box access, 113
string index numbering, 51-52
style sheets, 217
using form id tags as, 105
indexOf method, 51-52, 545-546
inequality operator, 49
inheritance, 517-518, 526-528
initAutoComplete function, 507
initDialog function, 483
inline error messages, 119
inline style sheets, 224
inner scopes, 330
innerHTML property, 25, 477-478,
493
input element, 430
insecure page warnings, 358
insertBefore method, 89, 94, 297
insertNode method, 501
insertRule method, 221-222, 226
interactive scripting, 267
interfaces (see user interfaces)
Internet Explorer
(see also attachEvent method)
:active pseudo-class, IE 5 and 6, 325
asterisk wildcard support, 98
attribute copying, 93
browser detection, 197, 329
computed styles and, 205
contains method, 332, 361

deleting style sheet rules, 223

eventPhase property support, 349

float property, IE 5, 325

FSCommand and, 463

garbage collection problems, 556

getSelection alternative, 497

insecure page warnings, 358

missing DOCTYPE declarations and
IE 6, 199

mouse cursor position, 249

opacity support, IE 5, 180, 488

references to stored lengths, 537

related Target support, 345

relative positioning quirk, 331

screen readers and, 436

scrollTop property and IE 5, 139

setAttribute method and, 96

tag name uppercasing, 219

XMLHttpRequest support, 468-469

Internet Explorer for the Macintosh

chaining event handlers, IE 5, 17

distinguishing from IE for Windows,
196

drag-and-drop effects and IE 5, 282

dynamically generated content, IE
5,259,484, 510

element sizing bug, IE 5, 247

event listener support, 234

memory leaks in IE 5.0, 54

setTimeout function and IE 5, 306,
344

slider control and IE 5, 313

style switching and IE 5, 211

timing functions and IE 5, 269, 273

Internet Explorer for Windows

activate event, 394

alternate style sheet bug, 215

array function support in IE 5.0, 72—

asterisk notation and IE 5, 405
child selector support, 336
distinguishing from IE for Mac, 196

576

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

drag-and-drop bug, 295
errors console, 22
expression syntax, 337
Flash support, 458
IE 5.0, positioning, 301
iframe support, IE 5, 359, 477, 492
navigator.plugins and, 459
positioning in IE 5.0, 299
rules property, 217
select elements, 354, 358
interpreter, efficient use, 11, 537, 544,
548
intuitive values, 175
inverted color scheme style sheet, 212
isNaN function, 41
iteration and code efficiency, 550

J

Java LiveConnect module, 461-462

JAWS screen reader, 441, 444, 448,
451, 455

join method, 71

JSON (JavaScript Object Notation)
format, 481

K

keyboard accessibility, 389-393
drag-and-drop functionality, 400
form validation, 398
menu usability, 421-428
menus, 390, 392, 411-420
mouse accessibility combined with,

395-402
multiple navigation modes, 411
scripted rollovers, 396
simulating the experience, 389
slider controls, 428-436
starting from scratch, 395
user needs, 385, 388

keyboard navigation, 368
menu repositioning and, 425

screen readers and, 437
keyCode property
repeat rates and, 435
testing for arrow key events, 424,
427-428
testing for the Tab key, 369, 371,
450
keydown event, 369, 428
keydown event listeners, 433, 507
keypress event, 428
keypress event listeners, 507
keyup event, 369
keyup event listeners, 433, 450
Konqueror browser, 96, 139, 196-197,
345

L
label element, 120, 441
lang pseudo-class, 404
language attribute, script tag, 14
lastChild property, 86
lastIndexOf method, 52
leap years, 162
left property, style object, 420
length property, 53
iterating through arrays, 68
iterating through collections, 537
limitations, 69
push function workaround, 73
limitations of JavaScript, 2
line breaks, 24, 553, 555
line feed character, 46
link element, 207
links
creation, with the WYSIWYG editor,
493
insertion, DOM methods, 89
keyboard accessibility and, 390
navigation and screen reader identi-
fication, 450
opening in new windows, 133-135

Order the print version of this book to get all 588 pages!

577

http://www.sitepoint.com/launch/92257e

Index

screen reader identification of, 439
styled links in slider controls, 430
list item mouseout function, 332, 360
list item mouseover function, 330, 347,
349
lists (see ordered lists; unordered lists)
LiveConnect module, Java, 461-462
load event
rendering completion and, 246
running scripts before, 560-563
load event handler
multiple script problems, 15
script location, 10
loading scripts, 12
local time defined, 152
LocalConnection function, Action-
Script, 464
location property, document object,
447
looping efficiently, 537, 542
(see also for loops)

M

m (multi-line flag), 55
Macintosh versions of IE (see Internet
Explorer for the Macintosh)
Macromedia Corporation (see Flash)
mandatory text fields, 113
Math class
abs method, 278
built-in operators, 32
ceil method, 188
floor method, 36
properties, 32
random method, 32, 35
round method, 35
mathematics (see numeric data)
matrixes, 66—67, 76
media attribute, 215
media types, styling, 226
memory leaks, 54, 556-560

menus, 321
accessibility, 326
adding timers, 338
closing, 417
drop-down menu example, 323-361
expanding menus, 361-371
functional types, 321
keyboard accessibility, 411-420
keyboard usability, 421-428
nested submenus, 412
repositioning, 345, 350
stacking, 351
method creation, 521-526
methods, overriding, 74
MIME type, 88
modal interaction, 454
modifiers, regular expression, 54
modulus operator, 31, 43
motion effects, 270-281
(see also animation)
slider controls, 311-318
user control over, 302
mouse cursor
appearance change, 283
position detection, 248-250, 513
mouse events, screen readers, 370
mouse movements
adding timers to menus, 338
threshold values, 285-286, 293
mousedown event listeners, 511
mousedown events, 450
mouseout event listeners
accessible slider control, 434
menu timers, 339
removing iframe elements, 356
mouseover effects
accessible tooltip display, 402
image swapping, 169
style sheet rule for, 222
tooltip display, 250-257
mouseover event listeners
accessible drop-down menu, 419

578

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

accessible slider control, 434
creating iframe elements, 355
menu timers, 339
mouseover event sources, 394, 408, 450
movement (see animation; motion ef-
fects; mouse movements)
moveODbject function, 272-275
Mozilla browsers
(see also Firefox)
browser detection, 197
distinguishing Safari from, 196
focus event bubbling, 397
script timeouts, 546
strict warnings and, 545
MSXML parser, 469
multi-dimensional arrays, 66-67, 76
multi-line flag, regular expressions, 55
multiple inheritance, 527
multiple scripts
event handlers and, 14, 230
event listeners and, 233

N

named arguments, 547
namespaces, 88, 531-532
naming conflicts, 531, 555
NaN (Not a Number) value, 41
navigation using lists, 322
(see also keyboard navigation; menus)
navigator object properties, 196, 459
browser detection and, 194, 196,
554
nesting
event bubbling and, 243
nested closures, 341
nested divs, 313
nested for loops, 67
nested functions, variable access, 530
nested lists, 323
nested submenus, 412
ternary operators, 539

Netscape, 2, 462
news ticker example (see scrolling news
ticker)
nextSibling property, 86
nodeName property, 87
nodes, DOM
cloning, 91
iterative Change warning, 92
node types, 79
relational properties, 85
whitespace nodes, 86
nodeType property, 87
nodeValue property, 88
non-identity operator, 50
noscript element, 6
Number function, 40
numeric data, 31-44
adding ordinal suffixes, 42
base detection, 41
converting dates to strings, 37
converting numbers to strings, 36—
38
converting strings to, 39-42
currency values, 38
random numbers, 35
rounding numbers, 33
sorting and compare function, 75
sorting arrays, 76
sorting in tables, 264
string concatenation risks, 37
testing for, 41, 58
text field validation, 114

o

obfuscation, source code, 18, 553
object based scripting, 71, 518
object detection (see feature detection)
object orientation, 515-533

code efficiency and, 549

example script, 519-520

method creation, 521-526

Order the print version of this book to get all 588 pages!

579

http://www.sitepoint.com/launch/92257e

Index

modelling inheritance, 526-528
object based code and, 518-519
principles and benefits, 515-518
object reference creation, 543
object-literals, 70
objects
checking the existence of, 532
created in other event listeners, 254
replication by cloning, 519
storing references to, 536
warnings connected with, 28
offleft positioning, 326
accessible slider control, 429
hiding menus, 327, 368
optional questions, 123
overriding, 381
screen readers and, 440
offset dimensions bug, IE 5 for Mac,
247
offsetHeight property, 245
offsetLeft property, 247, 352
offsetParent property, 247
offsetTop property, 247
offsetWidth property, 245, 301, 332,
352
on* event handlers, 230
(see also * events)
onclick event handler, 124
online application design, 467-514
frameworks, 476
onload event handlers, 328
hiding optional elements, 123
preloading images, 170
progress indicator, 188
onmousedown event handlers, 495
onscroll event handler, 138
onsubmit event handler, 116
opacity property, CSS, 176-177, 180-
181, 295, 488
open method
window object, 131, 134
XMLHttpRequest object, 471, 473

Opera browser
absolutely positioned elements, 300—
301
attribute leading spaces, 331
Content-Type headers, 472
detection, 196-197
spatial navigation features, 403,
407, 421
tooltip display, 253
window sizing, 132
operating systems
browser detection and, 197
distinguishing between IE versions,
196
GUI behaviors, 391
operator precedence, 32
operators, mathematical, 31-33
optimization, 535-564
anticipating load events, 560-563
avoiding memory leaks, 556-560
browser-specific optimizations, 545
compressing production scripts, 552
556
concise coding, 548-552
faster scripts, 536-548
looping efficiently, 537, 542
ordered lists, 290-298
ordinal numbers, 42, 156
overflow property, 301
overline text decoration, 218, 222
overriding
classnames, 531
methods, 74, 517-518
multiple scripts and, 10, 14
styles, 226
variables, 530, 555

P

page dimensions, 486
(see also viewport size)
page load event, 213

580

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

page requests, individual, 454

pageX and pageY properties, 249

pageYOffset property, window object,
139

paragraphs, changing to divs, 91
parentheses, effects, 33, 38
parentNode property, 86
parseFloat function, 40, 114
parselnt function, 40-41, 114
pasteHTML method, 502
path setting, cookies, 148
per cent sign

modulus operator, 31

URL coding, 47
performance of scripts (see optimiza-

tion)

persistent style sheets, 207-208, 211
phases, event cycle, 243
phone numbers, 59
photographic slideshows, 173
pipe character, 56
pixels, normalization to, 206
placeholders, 170
plugins (sec Flash, Macromedia)
plugins property, navigator object, 459
plus sign, in regular expressions, 56
polymorphism, 518
popups, 128-133, 481-489

error reporting to, 25

ethical use, 129

usability and accessibility, 128
position detection

animation and, 273

elements, 246248

mouse cursor, 248-250
position inversion, 350
position property, CSS, 248
position rounding, 350-351
positioning

(see also absolute positioning)

list items with CSS, 291

menu repositioning, 345, 425
offleft positioning, 123, 326-327,
368, 381, 429, 440
position detection, 348
tooltips, 254, 408
pow method, Math object, 32
preferred style sheets, 211
preloading images, 167
image swapping, 170
image-based clock, 182
progress indicator, 186
presentation (see separation of con-
tent...)
preventDefault method, 236
previousSibling property, 86
private members, 516, 518
probability distributions, 173
processing power and animation, 279-
280
processor latency, 184
progress indicators, 186
progressive enhancement, 5-7, 439,
455
properties, direct referencing, 520
property creation, object oriented, 520
Prototype JavaScript framework, 476
prototyping, 74, 527
cloning objects by, 526
method creation using, 522
methods for built-in objects, 525
mimicking inheritance, 518-519
object prototyping, 154
prototype object, 523
prototype object functions, 523
prototype property, 523
pseudo-classes, CSS, 169, 325, 396,
404
pseudorandom numbers, 35
push method, 72

Order the print version of this book to get all 588 pages!

581

http://www.sitepoint.com/launch/92257e

Index

Q

qualified values, href attributes, 382
question mark, regular expressions, 56
Quirks mode, 140, 198-199

quotes, 45-46, 71

R
radio buttons, 108-109, 115
random image display, 171-172
random method, Math object, 32, 35
random numbers, 35
random sorting, 77
ranges
auto-complete text fields, 502
browser support, 498
cursor position and, 513
getSelection alternative, 497
specifying limits of, 501
readability of code
braces and semicolons, 11
compacting conditions and, 552
nested operators, 540
string concatenation and, 37
readyState property, XMLHttpRequest,
472

recursive functions, 264, 333, 383
redirects, accessibility and, 442
referencing
circular references, 556
direct referencing, 520
eval function, 543
frequently used objects, 536
function definition and, 522
function references, 306
RegExp class, 54-55
regular expressions, 53-63
className property retrieval, 101
comment and whitespace removal,
553
Flash version detection, 460
indexOf and, 53, 546

matching text in strings, 57
searching for and replacing text, 61
special characters, 57
substring location test, 545
testing for email addresses, 60, 115
testing for leading spaces, 331
testing for numeric data, 58
testing for phone numbers, 59
testing for whitespace, 114, 264
rel attribute, 133-134, 215
related property, 557
related Target property, 345, 417
relative positioning, 248, 299, 331
remote procedure calls (see data trans-
mission)
remote scripting
individual page requests and, 454
keyboard accessibility, 401
screen readers and, 446
removeChild method, 93
removeEventListener method, 237
removeRule method, 1E, 223
rendering modes, 139-140, 198-199
repeat rates, key events, 435
replace method, 62, 478
replaceChild method, 89-90
repositioning (see positioning)
reset functions, 377
resizing swapped images, 170
responseText property, XMLHttpRe-
quest, 474
responseXML property, XMLHttpRe-
quest, 473
retrieveComputedStyle function, 273
return statements, compacting, 551
returnValue property, 236
rollover effects, 396, 439
rollover styles, 330, 336
round brackets, 56, 62
round method, Math object, 32, 34-35
rounding numbers, 33, 38

582

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

rules property, IE, 217
S

Safari browser
cancelling link defaults, 237, 483,
495
CSS 2 System Colors and, 403, 410
detection, 197
distinguishing from Mo-zilla, 196
DOM support limitations, 221-223,
226
events from text nodes, 344
href values, 382
input element problem, 430
lang pseudo-class, 404
scroll event problems, 139
setTimeout support, 344
stopDefaultAction function and, 368
stylesheet collection, 217
Safari Enhancer, 20
Sajax JavaScript framework, 476
scope (see variable scopes)
screen readers
accessible scripts for, 436-456
current sub-branch display, 383
detection through events, 369-370
Flash alternative, 455
form validation, 440
hiding menu elements, 326
identification, 449
link identification by, 439
menu accessibility, 392
modal interaction and, 454
problems with dynamic content,
390, 442, 444, 453
products listed, 436
reading label text, 441
remote scripting and, 446
scripting support, 388, 437-449
simulating the user experience, 436
suggested best practice, 453

tricks and hacks, 449

user needs, 385, 388, 454-455
script element, 12, 14
scripts

anticipating load events, 560-563

concise coding, 548-552

faster running, 536-548

inside iframes, 480

multiple, and DOM 0 event hand-

lers, 230

timing out, 546

Web version optimization, 552-556
scrollBy method, window object, 140
scrolling

menu repositioning and, 353

prevention, accessible menu example,

428

scroll position, 137-141, 249
scrolling news ticker, 298-305

screen readers and, 442, 445

user control, 302, 305
scrollTo method, window object, 140
scrollTop property, 139
security

cross-frame scripting, 137

iframes and, 480

restrictions on JavaScript, 3

XMLHttpRequest and, 471
select boxes, 111
select elements, 354, 358, 442
selectedIndex property, 113
selectionStart property, 513
semicolon terminator, 11, 553
send method, XMLHttpRequest object,

471
separation of content, style, and beha-
vior, 8-11, 321, 323

status of navigation arrows, 337
separators

className property, 100, 102

CSS property values, 308

sub-cookies, 149

Order the print version of this book to get all 588 pages!

583

http://www.sitepoint.com/launch/92257e

Index

serif text style sheet, 209, 212
server XMLHttpRequests, 470
server-side scripting, 3, 182
set* methods, Date object, 154
setAttribute method, 95, 98
setInterval function, 183
alternative to onscroll, 139
alternatives, 273
assessing document loading, 562
debugging and, 26
setTimeout compared to, 267
soccer ball animation, 272
stopping execution, 269
setSelectionRange method, 513
setTimeout function, 175
accessible slider control, 435
accessible tooltip example, 408
animation example, 180
auto-complete text example, 507,
513
clip-based transitions, 306
iframes and, 479
menu timers, 339, 341
setInterval compared to, 267
style sheet maintenance script, 213
WYSIWYG editor, 492
shopping cart applications, 34, 281
shortcuts
DOM 0 attributes, 230
forms collection, 104
ternary operator, 131
show attribute, XLinl, 142
shrinking transitions, 310
sidebar property, window object, 196
single-letter variable names, 556
slider controls, 311-318
accessible drag-and-drop functional-
ity, 401
example appearance, 316, 318
fixed values, 315
keyboard accessibility, 428-436
slideshows, 173

soccer ball animation, 272-278
sort method, 75-77
sorting
drag-and-drop reordering, 291
list items, real-time effect, 297
random sorting, 77
stable sorts, 77
table sorting , 257-265
source code visibility, 1, 18
source order execution, 213
source order indexing, 217
spaces
className property, 100, 102
global removal, dangers, 554
underscores conversion to, 525
span element, 186
speaking browsers, 370
special characters
avoiding in cookies, 144
escaping in strings, 45
regular expressions, 57, 101
URLs, 47
splice method, 72
split method, 53, 145
spoofing, 194
sqrt method, Math object, 32
square brackets, 57, 65, 544
src property, 358
stable sorting, 77
staggered loading, 173
standardization, 2, 156
Standards mode, 139-140, 198-199
static elements, 287
static HTML, 6
status argument, window.open, 132
status bars, 186
stop button, news ticker, 302, 305
stop method, ActionScript, 462
stopDefaultAction function, 236
drag-and-drop effects, 287
Opera tooltip display, 253
Safari bug, 368

584

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

slider control example, 316
stopPropagation method, 244
stopwatch example, 184
strict warnings, 26-29, 544
string concatenation, 37, 100, 156
string data type

array indexing using, 69

converting arrays to, 71

converting numbers to, 36-38

converting to numbers, 39-42

cookies as, 144

existence of data, 51

substrings, 51
String function, 36
string manipulation, 45-63

case changes, 47

comparing strings, 48, 264

date formatting, 156, 165

matching with regular expressions,

57

searching for and replacing text, 61

substrings, 51-52, 545

testing for email addresses, 60

testing for numeric data, 58

testing for phone numbers, 59
style object

computed styles and, 205

left property, 420

style attribute and, 201, 203
style property references, 538
style sheet switching, 207

built-in, 211

loading delays and, 563

media types and, 215
style sheets

(see also CSS)

adding new rules, 220

creating, 224

deleting rules, 223

drop-down menu example, 323,

326, 330, 334

expanding menu example, 362

iframes and, 355
maintaining alternate style sheet
states, 212
manipulating, 217
media types and, 226
types of, 211
styleFloat property, 202
styles
changing for a group of elements,
203
changing for a single element, 201
expanding and folder tree menus,
376
rendering modes and, 199
retrieving computed styles, 204
styleSheets collection, 224
sub-cookies, 149
subdomains and cooldes, 147
submenus
arrow indicators, 334
constraining within windows, 345
expanded, 374
submission and form validation, 116,
398, 400
substring method, 52
substrings, 51-52, 545
switch menus (see expanding menus)
switch statements, 116, 540-542
synchronous requests, 471
System Colors, CSS 2, 403, 410

T

tab order and accessibility, 391, 402

tab space character, 46, 553, 555

tabIndex attribute, 391, 478

tabIndex property, 358

table sorting by column, 257-265

target attribute, 133

target elements, 238, 252

ternary operators, 539-540
compacting scripts, 551

Order the print version of this book to get all 588 pages!

585

http://www.sitepoint.com/launch/92257e

Index

popup overflow example, 130
time comparison example, 162, 166
test method, 58, 545
text boxes and slider controls, 317
text fields
accessing, 105
auto-completing, 502
label location, 121
locating, 103
slider controls and, 311
validating mandatory, 113
text manipulation, 61
(see also string data type)
text nodes
checking for, 87
creating, using the DOM, 88
insertion options, 89
removing or relocating, 93
Safari browser events from, 344
text selections, 295, 496-502
text sizes, tooltips, 410
textarea element, 490
text-only browsers, 436
this variable, 238, 520-521
Safari bug, 170
threshold movement values, 285-286,
293
time based data (see Date object; image-
based clock)
timed effects, 267-270
timers
open and close timers, 338
timer IDs, 269
timing functions (see setInterval func-
tion; setTimeout function)
timing out scripts, 546
title attribute, 207-208, 216
tooltips and, 250, 252, 402-411
title element error reports, 25
toElement property, IE, 417
toGMTString method, 152

toLocaleString method, 152
toLowerCase method, 47, 219
tooltips
accessibility and, 402-411
displaying on mouseover, 250-257
Safari browser, 410
toString method, 37, 39, 152
toUpperCase method, 47
transition effects
clip-based transitions, 305
curtain effect, 309
shrinking effect, 310
squashing an object, 306
treeMenu function, 364-382
try/catch structures, 24, 468, 484
24-hour clock, 157
type attribute, script tag, 14
type conversion testing, 28
typeof command, 16, 28
alert functions and, 23
feature detection using, 192
isNaN function and, 41
string-indexed arrays, 70

U

undefined data type, 16
underscores conversion to spaces, 525
unescape function, 48, 144, 149
uniquelD property, document object,
196
unit normalization, 206
Unobtrusive Flash Objects, 458, 465
unobtrusive scripting, 5, 8-11
unordered lists
auto-complete text example, 508
drag-and-drop repositioning, 282
expanding menus from, 362
menus using, 322
nesting and wellformedness, 323
URL removal with comments, 554
URL-safe characters, 47

586

Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

usability
accessible DHTML menus, 421-428
drag-and-drop effects, 283
frames and, 135
inline error messages, 119
menu repositioning and, 353
menu structure and, 345
menu timers and, 338
online applications, 467
open and close timers, 338
opening current menu branch, 378
popups and, 128
progress indicators, 186
screen reader hidden content, 440
user agent strings, 192, 194, 197
user interfaces
creating with DHTML, 229-266
differing GUI behaviors, 391
drag-and-drop functionality, 281—
290
screen readers, 454-455
UTC (Coordinated Universal Time),
152, 154
UTC epoch, 153, 161

\'

validating parsers, 13
validation
(see also form validation)
email addresses, 60, 115
numeric fields, 114
radio buttons, 115
value property, 105, 111
var keyword, 529-530
variable scopes, 528-531
closures, 181, 235, 341, 531
inner scopes, 330
naming conflicts and, 555
variables
(see also global variables)
compacting names, 555-556

direct evaluation avoiding, 551
dynamic and non-dynamic, 537-538
nested functions and, 530
warnings about, 27
VBScript, 463
vendor property, navigator object, 196
vertical navigation bars, 325, 412
vertical overflow, 352
vertically collapsing transitions, 305
viewport size, 141-142
(see also page dimensions)
constraining menus within, 345
drop sheet positioning, 488
tooltip positioning and, 257, 409
visibility property, 368
custom dialog example, 485
drag-and-drop reordering, 295
tooltips, 256-257

W
W3C (World Wide Web Consortium)
addEventListener method, 16
data transmission specifications and,
468
device-independent event handlers,
393
DOM definition, 80
event listeners, 233
event model, 238
warnings, 26-29, 544
WCAG (Web Content Accessibility
Guidelines), 393, 395
weighted random selections, 172-173
whitespace
(see also spaces)
code efficiency and, 552
detection, 114
necessary whitespace, 554
regular expression check for, 264
removal from node trees, 421
source code obfuscation and, 18

Order the print version of this book to get all 588 pages!

587

http://www.sitepoint.com/launch/92257e

Index

XMLHttpRequest object and, 474 properties, 473
whitespace nodes, DOM, 86 Safari browser support, 197
white-space property, 300
wildcard characters, 56 y4
window area (see viewport size) zeroes, 38, 43
window object properties, 128 z-order, 331, 354
windowed controls, 354, 358
windows
(see also popups)

aggressive scripting, 127
constraining menus within, 345
opening links in new , 133-135
primary, and popup size, 130
Windows Eyes screen reader, 444, 448—
449,451, 455
browser compatibility, 436
DHTML Accessibility project, 392—
393
Windows IE (see Internet Explorer for
Windows)
word boundary character, 101

WYSIWYG editor, 489-496, 499

X
XHTML
comments and, 14
forms collection and, 106
navigation list element, 322
XLink, 142
XML
(see also AJAX)
form element access, 106
MIME types, 88
XMLHttpRequest object, 468-476
application development frame-
works, 476
feature detection example, 192
headers, 475
iframe alternative, 476481
methods, 470
notifying users of updates, 446

588 Order the print version of this book to get all 588 pages!

http://www.sitepoint.com/launch/92257e

	The JavaScript Anthology
	Summary of Contents
	Table of Contents
	Preface
	Who Should Read this Book?
	What’s in this Book?
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	1. Getting Started with JavaScript
	JavaScript Defined
	JavaScript’s Limitations
	Security Restrictions

	JavaScript Best Practices
	Providing for Users who Don’t Have JavaScript (Progressive Enhancement)
	Separating Content from Behavior (Unobtrusive Scripting)
	Using Braces and Semicolons (Consistent Coding Practice)
	Adding a Script to a Page
	Putting HTML Comments Around Code
	The language Attribute

	Getting Multiple Scripts to Work on the Same Page
	Hiding JavaScript Source Code
	Debugging a Script
	Understanding a Browser’s Built-in Error Reporting
	Using alert
	Using try-catch
	Writing to the Page or Window
	Using an External Debugger

	Strict Warnings
	Summary

	5. Navigating the Document Object Model
	Accessing Elements
	Creating Elements and Text Nodes
	Changing the Type of an Element
	Removing an Element or Text Node
	Reading and Writing the Attributes of an Element
	Getting all Elements with a Particular Attribute Value
	Adding and Removing Multiple Classes to/from an Element
	Summary

	7. Working with Windows and Frames
	Using Popup Windows
	What’s Wrong with Popups?
	How Do I Minimize the Problems?

	Opening Off-site Links in a New Window
	Communicating Between Frames
	Getting the Scrolling Position
	Making the Page Scroll to a Particular Position
	Getting the Viewport Size (the Available Space inside the Window)
	Summary

	13. Basic Dynamic HTML
	Handling Events
	The Short Way: Using Event Handlers
	The W3C Way (Event Listeners)
	Referencing the Target Element
	What is Event Bubbling, and How do I Control it?

	Finding the Size of an Element
	Finding the Position of an Element
	Detecting the Position of the Mouse Cursor
	Displaying a Tooltip when you Mouse Over an Element
	Sorting Tables by Column
	Summary

	What’s Next?
	Index

